
fD-ft?2 46? AN ANALYSIS TOOL. IN A KNOWILEDGE BASED SOFTUAREL/
ENGINEERING ENVIRONNENT(U) AIR FORCE INST OF TECH
NRIGNT-PATTERSON AFE ON SCHOOL OF ENGI.. D N FAUTNEREE

UNCLASSIFIED 21 MAR 86 AFIT/GCS/ENG/96N-2 F/B 9/'2

E EEEIE

liiiU, m43~*

Q36

11111 L25 I~LA~ ll .

' /

AN ANALYSIS TOOL IN A KNOWLEDGE BASED
SOFTWARE ENGINEERING ENVIRONMENT

THESIS

- David W. Fautheree
C.", Captain, USAF

Tii; d:c,'r : lic-' beon opp:cved-

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright- Patterson Air Force Base, Ohio

L'

AFIT/GCS/ENG/8 6M- 2

AN ANALYSIS TOOL IN A KNOWLEDGE BASED

SOFTWARE ENGINEERING ENVIRONMENT

THESIS

David W. Fautheree
Captain, USAF

Approved for public release; distribution unlimited

* 0-

• ",

AFIT/GCS/ENG/86M-2

AN ANALYSIS TOOL IN A

KNOWLEDGE BASED SOFTWARE ENGINEERING ENVIRONMENT

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science, Computer Systems

David W. Fautheree, B.S.

Captain, USAF

March 1986

Approved for public release; distribution unlimited

,,:- . ' ' .:,- -. : , -', .? . -, . " .-: ./ -..........-..-..-...-......-."......-............ V '
-

List of Acronyms

AFIT Air Force Institute of Technology

AFIT/ENG AFIT School of Engineering, Department of Electri-

cal and Computer Engineering

DBMS Data Base Management System

DFD Data Flow Diagram

DEC Digital Equipment Corporation

HIPO Hierarchy plus Input, Process, Output

ISL Information Sciences Laboratory

KBSEE Knowledge Based Software Engineering Environment

KBSMA Knowledge Based Software Module Analysis tool

SADT Structured Analysis and Design Technique

SDW Software Development Workbench

SDWE SDW Executive

"4.

%

List of Figures

Page

Figure 1.1 A General Architecture of a Knowledge
Based System 1-6

Figure 2.1 KBSEE Top Level DFD 11-7

Figure 2.2 KBSEE Major Subsystem DFD 11-8

Figure 2.3 KBSEE Project Manager DFD II-10

Figure 2.4 KBSEE Command Interpreter DFD . . 11-13

Figure 2.5 DFD for a Typical KSEE Tool 11-15

Figure 2.6 DFD for KBSMA 11-16

Figure 3.1 DFD for KBSEE System Design 111-3

Figure 3.2 KBSEE Terminal Display Layout . . 111-7

Table 3.1 KBSEE Keyboard Command Mapping . . 111-9

Figure 3.3 KBSEE Project Manager DFD III-11

Figure 3.4 Project Database Record 111-12

Figure 3.5 User Profile Record 111-12

Figure 3.6 Project Save Store Record 111-13

Figure 3.7 KBSMA Design DFD 111-14

Table 4.1 Languages and Tools on the ISL VAX . IV-2

Figure 4.1 KBSEE Terminal Keyboard Functions . IV-6

iv

. . .

AFIT/GCS/ENG/86M-2

Abstract

This thesis investigation presents the conceptual level

development of a knowledge based software engineering

environment. A variety of existing software tools are

integrated into the environment as well as newly developed

knowledge based tools, such as the software module analysis

tool designed and implemented for this project. The

environment is an extension of concepts from the AFIT

Software Development Workbench (SDW).

System development follows the software engineering

lifecycle of requirements analysis, design, implementation,

and operation as well as exploratory programming/rapid

protoyping techniques. ..- .

- . - -- " / i

* v

Table of Contents

Page

Acknowledgements ii

List of Acronyms iii

List of Figures iv

Abstract v

I. Introduction I-i

Thesis Objectives I-i

Background I-i

The Software Development Lifecycle . . 1-2

The Software Development Workbench . . 1-4

Knowledge Based Systems I-5

*Knowledge Based Software Engineering
Environments 1-7

Problem and Scope 1-9

Standards 1-10

Approach I-ll

Thesis Overview 1-13

II. Requirements Definition II-I

Introduction 1-1

System Specification Development 11-3

Project Manager Design Specifications . . . 11-9

Display Manager Design Specifications . . . II-11

Command Interpreter Design Specifications . 11-12

'

Tool Set Requirements 11-12

Conclusion .I............... 11-15

III. Design I-

Introduction II-

System Design 111-2

Display Manager Design 111-4

Display Manager Data Structures . . 111-8

Command Interpreter Design .I......111-9

Project Manager Design III-10

Project Manager Data Structures . . 111-12

Analysis Tool Design 111-13

Knowledge Base Design111-15

Production Rules 111-18

Conclusion 111-22

IV. Implementation IV-I

Introduction IV-I

System Implementation IV-1

Display Manager Implementation IV-5

Command Interpreter Implemenation IV-5

Project Manager Implementation IV-7

Tool Set Implementation IV-8

KBSMA Implementation IV-10

Conclusion IV-13

V. Conclusion and Recommendations V-1

.4'

4

Introduction V-1

Development Summary V-i

Analysis of Current System V-3

Recommendations for Future Investigation V-4

Conclusion V-5

Appendix A: Data Dictionary - KBSEE A-I

Appendix B: Structure Listing - KBSEE B-1

Appendix C: Source Code - KBSEE C-I

KBSEE.C C-2

KBSEE EXEC.C C-13

KBSEEPROJ.C C-39

Appendix D: Source Code - KBSMA D-1

Literalize Definitions D-3

Startup D-4

PrintModule D-5

Coupling D-6

Cohesion D-13

Appendix E: User's Manual - KBSEE E-1

Appendix F: User's Manual - KBSMA F-I

Bibliography BIB-1

Vita Vita-l

. ~ ~ P% ~-

a- aI

_ -. ' . - --.'_..-7 ' _ - - -, !__

I. Introduction

Thesis Objectives

The principal objective of this thesis effort is the

conceptual level development of a knowledge-based software

engineering environment. A variety of existing software

tools should also be integrated. Another objective is the

development an incorporation of the first knowledge-based

tool. This tool should analyze software modules using the

fundamental software engineering design principals of

coupling and cohesion (DeMarco, 1979) (Peters, 1981)

(Woffinden, 1985).

The requirements analysis, design, implementation, and

operation of the Knowledge Based Software Engineering En-

vironment (KBSEE) and the new analysis tool should be

thoroughly documented.

Background

This section introduces the software development

process, then provides a description and short history of

AFIT's Software Development Workbench (SDW). Finally,

knowledge based systems are introduced, providing the back-

ground on which the remainder of this investigation is

based. Since a detailed description of these areas is well

.5.

'1-"

I - 1

€ 4€-; 2"- - ;: %;-* **-?4 4-Z•: -:--- - ?q - -;-- 4-; . ?4 ;': :- .- ?<- 4--;4

I' beyond the scope of this section, numerous references are

provided.

The Software Development Lifecycle. The software

development lifecycle has been characterized in many dif-

ferent ways (Myers, 1975) (DeMarco, 1979) (Peters, 1981).

In this thesis investigation, the cycle is divided into five

phases. They are the requirements definition phase, the

design phase, the implementation phase, the integration

phase, and the maintenance phase. Since software develop-

ment is an evolving process, each phase receives feedback

information from later phases as well as input from earlier

phases. Hence, distinctions between lifecycle phases are

not always entirely clear. Configuration control of all

documentation at each phase in the lifecycle are essential

to prevent confusion, especially in the maintenance/opera-

tion phase.

The requirements definition phase emphasizes what the

system should do. In the design phase, requirements are

assigned to various hardware and software components, which

are then refined into interacting modules. During the im-

plementation phase, the defined modules are written in a

formal computer language and tested individually and as

groups. In the integration phase, the hardware and software

components are assembled into a system and are subjected to

' o2

testing as a whole. Finally, the system is used and

modified as necessary during the maintenance phase.

For a detailed discussion of the requirements phase, see

(DeMarco, 1979). The design phase is covered in (Myers,

1975' and (Peters, 1981). Various aspects of the the im-

plementation phase are covered in (Aho and others, 1974),

(Horowitz and Sahni, 1984), and (Wirth, 1976).

The lifecycle phases discussed above are based on the

classical software engineering lifecycle model. Recently,

rapid prototyping and exploratory programming approaches

have been introduced (Sheil, 1983) and (Martin, 1985).

Sheil and Martin advocate the use of powerful design tools

which allow the software developer to quickly write and

modify source code. In the rapid prototyping approach, the

requirements and specifications are not rigidly determined

before starting the design. General concepts are explored

in small prototypes to show feasibility of implementation

and correctness of design. From these explorations, re-

quirements and designs are either proven or modified. Even-

tually, the entire system design is solidified. In short,

the lifecycle phases evolve from the exploratory

design/implementation phases.

-3

,.- - - 3

. * % . . .

The Software Development Workbench. The Software

Development Workbench (SDW), which resides on the AFIT In-

formation Sciences Laboratory (ISL) Digital Equipment Cor-

poration (DEC) VAX-11/780 computer, was conceived and

designed to help the software engineer manage the inherent

complexity of developing computer software. The SDW con-

sists of "an integrated set of automated tools to assist the

software engineer in the development of quality and main-

tainable software" (Hadfield and Lamont, 1983:171).

The original work on the SDW was done by 2Lt Steven M.

Hadfield for his master's thesis (Hadfield, 1982). In his

thesis, 2Lt Hadfield provided motivation for the development

fr of an interactive and automated software development en-

vironment. He maintained that such an environment should be

integrated, traceable, flexible, and user-friendly. The

original SDW was the result of his implementation efforts.

Since that time, several AFIT graduate students have added

additional tools to the original SDW system:

Rose, 1982

Gatewood, 1983

Thomas, 1984

Shomper, 1984

Moore, 1984

Wolfe, 1985.

1-4II

.- - "1 - ' '' " " "" "" ' """ " "" " " "" " " ' "" ' 4 ' ' ' ' " *" ' "" " "
"

"" " " " "

Knowledge-Based Systems. The study of knowledge-based

systems ("expert systems") is in part an outgrowth of

artificial intelligence (AI), which involves the study of

automated problem solving, construction of symbolic

representation of knowledge, natural language

communication, and machine learning. Knowledge-based

systems are computer programs consisting of a knowledge

base, situation data, and an implicit or explicit control

structure (Harmon, 1985:49). The knowledge base consists of

a knowledge representation scheme, usually in the form of

production rules, semantic networks, frames, or a hybrid

scheme. Problem solving knowledge and techniques are

contained in the knowledge base. Situation data is stored

in memory and contains information about the specific

problem being solved. The control structure provides the

reasoning mechanism (inference) to solve the problem. The

general architecture is shown in Figure 1.1.

The six components on the left side of the figure reflect

the capabilities for knowledge acquisition, debugging and

experimenting with the knowledge base, running test cases,

generating summaries of conclusions, explaining the reason-

ing that led to the conclusion, and evaluating system per-

formance. The main computation engine is the search/in-

ference component, which searches the knowledge base for

1-5

- 2.

tn >1

Cl))

00

0 (0

4-4-C

*
0

a)

0 0J w

a)) CU

-4 U):c
w '-, .4

04 r0

applicable knowledge and makes inferences based on current

problem data stored in memory.

The knowledge base is the main repository for specific
4%

knowledge about the domain. Concepts are declarative repre-

sentations of domain objects, with both abstract classes and

concrete instances. Complex interrelationships are repre-

sented and used in making inferences and in constructing

similarities.

Conceptual knowledge includes the basic terms of the

problem domain. Rules are empirical associations linking:

causes and effects; evidence and likely hypotheses; and

situations and desirable actions. Models are collections of

interrelated rules, usually associated with a particular

problem hypothesis or overall diagnostic conclusion.

Strategies are rules and procedures which aid the use of the

rest of the knowledge base; i.e., guiding search and resolv-

ing conflicts when several equally plausible rules apply to

a given situation. (Rychener, 1984).

Knowledge Based Software Engineering Environments

Software systems are increasing in size (measured in

lines of executable code) at a rate considerably faster than

programmer productivity (measured in lines of executable

code produced per man-hour) (Myers, 1978). To combat this

1 7

software productivity problem, researchers are developing

new architectures for software engineering environments

using automatic programming and knowledge based system

technology (Kinnucan, 1985) (Kowalsky, 1984) (Ramanathan,

1984) (Sheil, 1983) (Teitelbaum and Reps, 1981) (Waters,

1982) (Wess, 1984).

These new architectures use one of two paradigms:

"program analysis" and "program synthesis" (Barr and Feigen-

baum, 1982:295-379). In both paradigms, systems are repre-

sented in some formal language, with specified formal trans-

formations on that representations. These transformations

eventually produce executable programs. In the analysis

paradigm, existing programs are examined to gain understand-

ing of their overall function and the overall programming

task is divided into elementary parts using the software

engineering method of step-wise refinement. In the

synthesis paradigm, the problem is formally specified in a

very high order language. A major problem with the analysis

method is that requirements change, causing repeated

re-analysis. Programming in very high order specification

languages is usually as least as difficult as programming in

a high order programming language (Frenkel, 1985).

There are several texts introducing the field of Artifi-

cial Intelligence and knowledge based systems. Two useful

I- 8

b -. ~.41:~- U

. I 1. .a . • ° ,U, " " , " " .'' .. ""'-" -. '. ' . -- " .' .-' -.-.-. " ' ...- " - - ,.---..

4

standard texts are (Nilsson, 1980) and (Rich, 1983).

(Hayes-Roth, 1983) and (Forgy, 1984) discuss various expert

system architectures and design methodologies.

Problem and Scope

The SDW tool set is not complete and none of the tools

represent a knowledge-based architecture. Currently the

only program specifically included in the SDW as a design

tool is AUTOIDEF. AUTOIDEF allows one to create Integrated

Computer Aided Manufacturing Definition (IDEF) models.

AUTOIDEF is described in the Interim AUTOIDEF System User's

Reference Manual (UM 170133010, 1982). One of the model

types in AUTOIDEF, IDEF0 , can be used to create Structured

Analysis and Design Technique (SADT) charts. Unfortunately,

AUTOIDEF does not provide for any automated consistency

checking. For more information about AUTOIDEF see (UM

170133010, 1982). (Peters, 1981:62-64) describes SADT.

Another tool provided by the SDW which can be applied

during the design phase, but not specifically included as a

design tool, is SYSFL (Mihaloew, undated). SYSFL is a grap-

hics editor which provides standard flowcharting symbols as

primitives. SYSFL can be used during the design phase to

create structure charts and flowcharts.

None of the design tools currently in the SDW have

1 9*.. .-.

sufficient power to support the type of rapid prototyping

and exploratory programming advocated by Sheil and Martin.

The SDW does not currently fully support an integrated

knowledge-based tool set. Furthermore, the SDW

human-computer interface is a hierarchical menu/command

interpreter system and often requires more keystrokes to use

than to execute the tools directly from a single level

menu/interpreter.

A new KBSEE and integrated set of tools would solve

these problems and extend the SDW concepts in an entire new

environment for future development. The knowledge-based

software module analysis tool is a good example of the type

WI of tool that can be developed in a KBSEE, a useful addition

to the tool set, and a first step towards a complete,

integrated, AI based software environment at AFIT.

Standards

Since this investigation emphasizes the use of a

knowledge based software engineering environment and a tool

for the analysis of software modules, the standard for

determining success is whether or not the environment can be

used effectively for software develepment and whether or not

the tool correctly analyzes the modules and provides useful

information to the software engineer. The tool uses data

I - 10

.4'

4-

|,

elements identified as design elements in AFIT/ENG Develop-

ment Documentation Guidelines and Standards (AFIT/ENG, 1984)

as its primary source of information. However, these data

elements do not provide sufficient information to allow the

tool to complete its analysis. Efficient, effective in-

teraction with outside elements, including the user, is an

important consideration. If the tool easily obtains its

required data, then this project should be considered suc-

cessful. An efficient human-computer interface is an impor-

tant consideration. Systems which process data efficiently

and correctly tend to not be used if they are difficult or

clumsy to use.

Approach

The development of the KBSEE and the analysis tool,

KBSMA, follow the standard software development cycle

described in the Background section. Exploratory program-

ming and rapid prototyping also contribute to the success of

this project, since these techniques allow various designs

to be more quickly tested, evaluated, modified, abandoned,

or adopted than the standard software development process

normally allows. This increase in productivity is due to

the power of employed software tools and the nature of the

implementation languages, which allow separate development

1 - 11

, ._ . . ,-.] p" . . . 4 ., , , . -. -,,. * , . . , , . - , .. < L .

and testing. The separate development and testing of small,

exploratory systems directly result in more rapid design of

the larger system. If a large system is developed using the

conventional software engineering lifecycle approach,

detailed design and implementation occur late in the cycle.

Problems occurring this late in the development cycle result

in major modifications of the entire system. In rapid

prototyping/exploratory programming, concepts are adopted or

rejected before the nature of the entire system is firmly

set (Sheil, 1983). When a concept is adopted, the system is

then optimized. Since the KBSEE with the KBSMA can be

categorized as a reasonably large and complex software sys-

tem, exploratory programming/rapid prototyping approaches

can (and do) yield productivity benefits.

The development of the KBSEE is very closely related to

the SDW. The goals are essentially the same: the develop-

ment of an organized environment consisting of off-the-shelf

software tools. The approach of the KBSEE differs from the

SDW in the primary emphasis on the human-computer interface

and the incorporation of knowledge based systems. The KBSEE

uses principles discussed in (Hansen, 1971) which presents

"User Engineering Principles for Interactive Systems" and

(Teitelman, 1977), which discusses interactions through

terminal displays. Other knowledge based environments

I - 12

' :::. ,;: i-2:" /.-'.,:"---J" :. ". : " ; . -.*-- -- ."'-.. " "? '"- - -- - - ;;""- -,

require the use of exotic hardware, i.e., Lisp machines, or

exotic languages. The KBSEE approach is to help software

engineers develop systems using tools and methods they are

already employing.

Thesis Overview

System level requirements are defined, then the specific

requirements of the KBSEE and the knowledge-based software

module analysis tool are examined in Chapter 2. The design

and implementation of the analysis tool is based on earlier

design project for EENG 749, Advanced Topics in Artificial

Intelligence. The design of the KBSEE and the analysis tool

k .Ais described in Chapter 3. Chapter 4 discusses the tool's

implementation. In Chapter 5, the implemented system is

evaluated using the standards described in this chapter and

recommendations for future investigation are provided.

Complete documentation is included as appendices to this

thesis.

I - 13

1

II. Requirements Definition

Introduction

The objective of the requirements definition phase is to

formalize what the system is to do into a concise, clear,

and consistent statement (Peters, 1981). To accomplish this

goal, the system must be viewed from three different

perspectives: customer, user, and designer. The customer

states the requirements by functional description of the

task the system is to accomplish. The user states require-

ments in the form of system operations. The designer con-

siders the views of both the customer and the user in the

design specifications. In all three views, requirements are

stated in some requirements definition language. The lan-

guage may be graphical or lexical or a combination of both.

This chapter presents a broad functional requirements

definition for a knowledge-based software engineering

environment and a software module analysis tool in that

environment. First, the overall requirements for the

Knowledge Based Software Engineering Environment (KBSEE) are

presented. Next, more detailed subsystem requirements are

discussed. Finally, the detailed requirements for the

analysis tool are described.

The requirements are presented in the form of data flow

II - 1

diagrams (DFDs). DFDs were chosen for use in this inves-

tigation for their simplicity. Other representations, such

as Structured Analysis and Design Technique (SADT) charts

and Systematic Activity Modeling Method (SAMM) activity

cells (Peters, 1981:133-138), show more information, but are

more difficult to create and maintain. DFDs are part of the

structured analysis concepts developed by (Stevens,

1974:115-139). In structured analysis, DFDs are used to

develop a specification and a design. This method is very

widely used, with its popularity stemming from its ease of

use (Peters, 1981:139-148). The use of exploratory program-

ming and rapid prototyping in this investigation requires

simplicity in requirements definition since requirements and

conceptual designs are implemented before and during system

specification development. Simplicity in requirements

definition was considered more important than detail.

DFDs consist of four basic elements: processes, data

flows, data stores, and sources/sinks. Processes transform

data and are represented by circles. Data flows are paths

between elements are are represented by arrows. Data

stores, represented by line segments or parallel lines, are
I,

files or data bases. Sources and sinks are entities outside

the system which originate and collect data, respectively.

Sinks and sources are represented by rectangles. For a

II- 2

detailed description of the DFD language, see (DeMarco,

1979).

System Specifications Development

While the automatic programming research discussed in

the previous chapter has produced interesting results, a

system which can generate quality, general purpose software

directly from requirements is beyond the current

state-of-the-art. Requirements are stated in some repre-

sentational language. The goal of an automatic programmer

is to transform the requirements language into a system

executable language. To accomplish this goal, the require-

ments language must either be represented in a language

close to the implementation language, requiring relatively

simple transformations, or be represented in a simpler re-

quirements language, and require complex transformations.

The first representation requires a notation that is nearly

as complex as a programming language, such as C or Lisp, and

is therefore on the same order of difficulty. The second

representation requires a system of automatic transforma-

tions similar to those accomplished by an experienced 3ystem

software engineer. If software development is a problem for

human software engineers (Myers, 1975) (Boehm, 1976) (DeMar-

co, 1979) (Peters, 1981) (Sheil, 1983) (Martin, 1985), then

II - 3

a

the development of software to automate software development

would compound the problem, except in small, limited cases.

A more practical approach, using current technology, is

to develop an environment which aids the software engineer

develop software products using existing tools and met-

hodologies. Software design would be done by humans, with

the more mundane tasks being automated, i.e. entering

operating system commands, remembering file names and their

location within the file system. The environment would

allow the human software engineer to devote nearly all at-

tention on design, not minor project details. Knowledge

based tools can also enhance productivity by using facts,

rules, and models stored in the knowledge base to help the

developer design consistent, quality code.

The initial specifications of the KBSEE are derived from

analysis of the user requirements. One requirement is that

the environment be used to develop software ising existing

tools. It is not reasonable to develop an entire tool set

within the scope of a single thesis investigation. Also,

users know and understand the interactions and operations of

existing software tools. If the environment uses existing

tools, then the user does not need to learn how to use the

new tools as well as how to use the new environment.

Software development is a repetitive process. Software

II - 4

modules are usually added to the system incrementally.

First, the designed module is implemented by adding it to

the source file. The calling module calls the new module

using a prescribed interface. The source file is then com-

piled and linked to form an executable program. The program

is then executed with a series of test situations to ensure

that the newly implemented module works properly. If there

are errors in the implementation of the module or its inter-

face, the source file is modified with a corrected version

of the module and the process is repeated. The user nor-

mally repetitively enters the same sequence of commands,

i.e., EDIT FOO, COMPILE FOO, LINK FOO, RUN FOO. The en-

01Fi vironment should have a simple human-computer command in-

terface that does not require the user to re-enter the same

commands.

Software systems usually consist of many separate files.

These files are usually organized in some manner within the

file system. Most software developers organize their

projects so that all required components are in the same

portion of the file system. For example, a project may be

located in a file directory with subdirectories for source

modules, data files, and executable files. Software en-

gineers should not have to devote time managing project

files. The environment should keep track of what project

II - 5

-the user is currently developing and where the associated

files are located.

The environment should be as simple in organization as

possible, but convey a large amount of information, i.e.,

available tools, environment status, current project infor-

mation, and user interaction.

This section describes such an environment in terms of

its functional requirements: the Knowledge Based Software

Engineering Environment (KBSEE) developed for this thesis

effort. Figure 2.1 shows the top level Data Flow Diagram

(DFD) for the system. This figure illustrates the scope of

the KBSEE: it accepts command and data from the user and

produces some software product. Figure 2.2 shows the

decomposition of the KBSEE into major subsystems, the

project manager, the display manager, the command inter-

preter, and a set of software tools. These major subsystems

correspond to the broad requirements stated above. The

remainder of this section discusses each of the subsystems

in turn. Detailed requirements for the software module

analysis tool are presented as a subsection of the software

tool set subsystem.

II - 6

.....................

vl-.71FJr~v~- WUYW ~ vvW,%

* 4.) (DC.

0 -, e
00

4-)

4J (0

u (oi

U) i

LI '

.5n

TIV - -- t

44

-4 U

4))

LI) (0)

0 0~

4IJ w (0

0
4-J

*a) >4

4- 0

(1)

ra w u0 4J

r-U a

r_ u

*a W ..

*~ 0. ~
0 'S. a

Project Manager Design Specifications

The project manager maintains the project database,

which keeps track of the location and names of files used in

various software development projects and maintains a

profile of the user's preferred tools and commands. The

project manager's functions allow the user to not have to

repeatedly re-enter commands and remember locations of

project files. Since software engineers usually develop

systems over a period of time ranging from hours to years,

the project manager must store the information in a fairly

permanent medium. The project manager must load information

from the permanent medium into working memory, where it can

be used by other KBSEE functions. Figure 2.3 illustrates

the data flow for the project manager, which consists of

four subfunctions: LOAD PROJECT, SAVE PROJECT, LOAD PROFILE,

and SAVE PROFILE.

When a save project command is entered by the user, the

SAVE PROJECT subfunction stores the current working project

information into a user's permanent, centralized project

database. This is necessary so that the user does not have

to specify filenames and locations each time the environment

is used.

Once the project information is stored into the project

database, a method for retrieval is necessary. The LOAD

II- 9

* i. ~ ~ K . .. - - .

Q) 4400 4

> 0 go 0

00L

' ~ ~ ~ 4 (U 0 L
4)4

0 4.

444 (0 00~

0 4hJ

0-4

0.40 04'

0 .41)'

0 .d J 4

0 41

4-J 04 4

>P 0 (a~ 0 -

V) ~ ' 04 C4

PROJECT function provides this method. If another project

is already in working storage, it is overwritten by the new

project.

The LOAD PROFILE and SAVE PROFILE subfunctions work

similarly to LOAD PROJECT and SAVE PROJECT, except they

maintain information about specific user preferences, such

as which editor or compiler to use and what commands are

used to build an executable software product. These two

functions allow the user to not have to repeatedly re-enter

operating system commands. SAVE PROJECT and LOAD PROJECT

save the information into a permanent local file, rather

than a centralized database.

Display Manager Design Specifications

The display manager organizes and maintains the terminal

screen of the KBSEE. This function is extremely important

in an interactive environment (Teitelman, 1971) (Hansen,

1971). The display manager displays the set of available

tools, presents information about the current project, and

provides positive feedback to the user about the environment

status. The display manager also provides a medium for user

interaction with the KBSEE.

-a "-

Io,

'." II - 11

. o o .° o . .. - -

Command Interpreter Design Specifications

The command interpreter controls the overall execution

of the KBSEE. Figure 2.4 depicts the data flow for the

command interpreter. As is shown in the diagram, the inter-

preter has two subfunctions: GET COMMAND and PROCESS COM-

MAND.

When the user enters a command, the GET COMMAND routine

validates the command. If the selection can be correctly

interpreted by the GET COMMAND process, the PROCESS COMMAND

routine is called. This routine controls the actual execu-

tion of the user's selected KBSEE routine.

Tool Set Requirements

Tool sets consist of a wide variety of tools. Conven-

tional tools (i.e., compilers, editors, linkers) have been

available for many years and are well understood. They are

generally available off-the-shelf from the computer manufac-

turer or a software vendor. Knowledge based tools have been

introduced comparatively recently, usually in a research

environment. Knowledge based systems in general have only

recently been in widespread use in industry (Harmon, 1985),

which accounts for their limited application. Knowledge

based tools are usually customized for the particular ap-

plication for which they are to be used and for the environ-

ment in which they will execute.

11 12

4-) 4-

-4-

4J-

'~ a)

aU 0

U)

4J'

4--a

0

%

The selection of the tool set should result in suffi-

cient tools to generate executable code. The tool set

selection should also be based on established, conventional

concepts as well as knowledge based methods. The SDW

provides a useful analysis of tool set requirements

(Hadfield, 1982).

An optimal tool set would be one that generates

executable code and provides tools for documentation, all

with minimal redundancy of effort. Which tools comprise an

optimal tool set is an issue currently unresolved

(Woffinden, 1985). Indeed, even the selection of a

minimally sufficient set of tools is the subject of some

controversy in the Ada environment (AJPO, 1980).

Figure 2.5 shows the DFD for a "typical" tool, the

compiler. The tool accepts input from some source, in this

case a programming language source code file, and transforms

it into some form of output, such as an object code file.

Figure 2.6 presents the DFD for a knowledge based tool:

the knowledge based software module analysis tool, KBSMA.

The analysis tool obtains information about the software

module to be analyzed from available sources. This

information is in the form of module and variable data

dictionary entries. Information about the module is then

placed in memory. The inference mechanism searches the

II - 14

knowledge base for any applicable production rules. If any

inferences can be made, the tool then produces its analysis

of the current software module.

Conclusion

This chapter has presented the results of the functional

requirements analysis and design specification phase of this

investigation. Since much of the requirements were

presented in the form of data flow diagrams, the symbology

of DFDs were discussed. The next chapter describes the

design phase of this thesis effort.

II - 15

S. > .-

~*.'* * * * * *..

.J 0

4--4

0
J) 0

4-) 4~J
o0 U)

04

0 -4

-4

Ln.

rC,'

4-J-

0-

S 4J

III. Design

Introduction

In this chapter, the design of the Knowledge Based

Software Engineering Environment, KBSEE, and the Knowledge

Based Software Module Analyzer, KBSMA, are described and

justified. The description begins with the overall func-

tional system design. Then, the design is decomposed into

functions of increasing detail. Detailed descriptions at

the lowest level of KBSEE's design and KBSMA's design are

given in Appendix B, Structure Listing - KBSEE.

The system-level design is presented in the form of a

data flow diagram to maintain a consistent format between

the requirements definition/system specification phase and

the design phase. The lower level designs are in the form

of structure listings, included as Appendix B. Structure

listings show the overall hierarchical structure of the

design. Structured listings are simpler in layout and more

concise than structure charts, while conveying the same

information. Also, they can be easily generated by an

automated tool available on the host computer system.

Details, such as passed parameters and data types are shown

in the data dictionary entries of Appendix A. Structure

charts usually accompany Data Flow Diagrams when using the

III - 1

.4 . 4 4 - .44*. . . . * ~ . *. ~ . . .

* - % .*o.- . *-~ . - . -

'..

structured analysis design methodology (Peters, 1981:139).

Other notations which can be used to document software

design include Leighton Diagrams, structure charts, and HIPO

charts. These notations often include redundant details

already shown in the Data Dictionary and are generally not

used in conjunction with DFDs. Changing notation and met-

hodology in the middle of the software development lifecycle

could allow inconsistencies when one design language is

translated into another. These other methods are discussed

in (Peters, 1981:44-62).

System Design

The system level design of KBSEE is based on the results

of the requirements definitions/system specification phase.

During this phase, the system was decomposed into three

functional elements: the Project Manager, the Command Inter-

preter, and the Tool Set. The basic design is shown in

figure 3.1, with elements DISPLAY MANAGER, COMMAND INTER-

PRETER, and TOOL SET. The Project Manager consists of the

centralized project database, the user profile store, the

current project save store, and ACCESS processes for each of

the stores. The Tool Set consists of executable programs

and associated data stores.

The COMMAND INTERPRETER reads input commands from the

III- 2

• ,' ." --' .'. '. -'... .'. " ..'. -" -o "z ." ." " : " ."" •" • ".- .. .- -" .".- ".- . . '- ", , " --. " . -". " .• -.J

.4-4 W4

0)0

Q) U)

0 -4 U) a)

-4 -4 (A C
S4- 4 (1)

:3 w 0 C.

a1)
.4-J

x U)

>1

U) 14

U) U)

4-) (L)-c

E 4-) a)

4J *4-1*

4'0 user, then invokes the DISPLAY MANAGER to output the user's

current selection from a list of valid choices. The DISPLAY

MANAGER also obtains the current project and workfile from

the PROJECT MANAGER and loads the user profile for the cur-

rent workfile. Having separate profiles for each workfile

allows multiple workfiles to be used within a single

project. Since there may be several executable program

files within a single project, each workfile should have its

own profile store for its appropriate edit, compile, or link

command. If the workfile is a text file, then the edit

command would contain the appropriate text processing

utility command and the compile and link command portion of

the store would be empty.

Once the user selects the EXECUTION COMMAND, the COMMAND

INTERPRETER uses the profile information to execute the

selected tool from the TOOL SET with minimal user interven-

tion. Depending upon the selection, the tool may access its

own local storage during tool use.

Display Manager Design. The design of the terminal

display is based on concepts from (Teitelman, 1971) and

(Hansen, 1971). The key principles from Hansen are:

1) Use selection, not entry.

2) Use names, not numbers.

3) Display inertia.

111-4
I u

--.'.-. .-.. ., .. .,. .., , ,.. .. .- -.-. ,.)..o -.-,.-.-.'. -- 1

* 4 4) Organize commands.

5) Rapid execution of common operations.

To accomplish principle 1, the terminal displays a menu

of choices, with the current choice highlighted. The user

moves the highlight to the desired choice and selects that

item. To accomplish principle 2, the menu choices are the

names of the items, not numbers; i.e., if the current selec-

tion is EDIT, then EDIT is displayed, not an arbitrary num-

ber from a list of choices.

To accomplish principle 3, the basic layout of the dis-

play remains the same in all operations. The user always

knows what choices are available from a single screen. The

user does not have to select a submenu to execute a desired

tool. This also prevents having to exit a submenu, return

to the main menu, and select another submenu to execute two

different tools from different tool categories. This sub-

menu/main menu/submenu interaction is reflected in the

current SDW. Display inertia is also maintained in the

KBSEE by using multiple windows. A window is a portion of

the screen that can be accessed as a single entity. The

concept of multiple windows originated with XEROX Company's

Palo Alto Research Center (PARC) (Teitelman, 1971). A

multiple window system allows essential information to be

displayed dynamically on the screen in a window, without

changing other windows on other parts of the display screen.

III - 5

r,

-

Principles 4 and 5, the efficient organization of com-

mands and rapid execution of common commands, respectively,

are accomplished by placing the most commonly used tools

(editor, compiler, linker) at a location in the menu where

they can be selected with a minimum of user interaction.

Since most developers execute an edit, a compile, and a link

in succession, more rapid execution can be gained if a

single command accomplishes all three in sequence and if the

KBSEE makes this command the current selection upon entering

the environment.

Figure 3.2 shows the layout of the KBSEE display. The

display is designed in accordance with the user engineering

principles discussed in the previous paragraphs. The upper

portion of the screen is divided into four windows which are

used to list selections. The Defaults window displays the

current project, workfile, and location within the file

structure. The Status window gives the user positive feed-

back about the process the KBSEE is currently executing.

Messages to and from the KBSEE are input and output in the

Messages window. The initial display and update of these

windows is the primary purpose of the display manager.

Since data can be read directly from the windows, the

display manager is also invoked by the command interpreter

for reading and highlighting the current menu selection.

Ill - 6

111 .

Main Menu
KBSEE - A Knowledge Based Software Engineering Environment

Build Program Work File Debugger Spawn to CLI
Edit User Profile Analyzer Exit
Compile Introduction Librarian
Link Printer
Run Text Formatting
Display Errors
Start Project
Select Project
List Projects
Display Project

Defaults >< Status
iPROJECT:
IWORK FILE:
IDIRECTORY:

Messages

Figure 3.2 - KBSEE Terminal Display Layout

- - - . -7 0 - :- 7 7 w

J

This method is used because of the minimal number of user

keystrokes involved in its use.

Display Manager Data Structures. The display

manager uses several data structures in the maintenance and

operation of the windows. The primary data structure in the

menu data structure, which maintains the current vertical

and horizontal cursor positions, the maximum and minimum

vertical positions, and the current menu item. This

structure is used only for windows used for displaying

menus. The display manager uses the structure to read the

menu selection directly from the display. The maximum and

minimum vertical values prevent attempts to read above or

below the window. For example, if the menu has only two

selections, an attempt to move the cursor to a position

above or below the two selections would be prevented by a

comparison to values in the data structure. By design, this

is prevented by "scrolling" to the appropriate maximum or

minimum value (i.e., if the current selection is the one at

the top of the menu and the user attempts to move the cur-

rent selection up, the display manager sets the current

selection to the one at the bottom and vice-versa).

The display manager also uses a data structure to store

the current menu. Since the design uses four menus, the

display manager needs to keep track of which one is cur-

1 -8• S , .

- .~wv~'7 w ~yw w 4 . r*. Fr W-. V% V.y~ . - r- 7 -:-

%.

rently in use. Whenever the user moves to a different menu,

the value of current menu structure is updated.

Command Interpreter Design. The primary function of the

command interpreter is to translate commands from the user

into a form appropriate for use by the KBSEE. To accomplish

this task, it must compare user inputs in the current

keystroke data structure to a set of valid user commands.

One of Hansen's user engineering principles is to minimize

memorization. The more words there are in a command lan-

guage, the more words the user has to remember. Since the

KBSEE is designed to use selection, rather than entry, there

should be a single command for selection. The simplest

command consists of a single entity. Therefore, the selec-

tion command should be a single keystroke. Other commands

are necessary to change the current selection, request help,

and remove the current window. These commands should also

be specified by a single keystroke. A table of the KBSEE

command language is shown in Table 3.1 below:

--

Key Action
UP Arrow Move to selection above current one
DOWN Arrow Move to selection below current one
LEFT Arrow Move to menu left of current menu I
RIGHT Arrow Move to menu right of current menu
Select Select current menu item for execution
Remove Remove menus and exit system
Help Select help

+--- .

Table 3.1 - Keyboard Command Map

Ill - 9'

Other keyboard inputs are ignored by the interpreter.

As discussed in a previous section, the interpreter inter-

acts with the display manager for menu and menu selection

information. When the user invokes the Select keyboard

command, the current menu item field in the menu data

structure is passed to the command interpreter for ex-

ecution.

Project Manager Design

As shown in Figure 3.3, the project manager maintains

three data stores, a centralized database of all projects

being developed by a user, a user profile for each project

work file, and a current project save store. When the KBSEE

is initially invoked, the project manager LOAD PROJECT func-

tion is invoked. The LOAD PROJECT function attempts to read

the current project save store. If there is no current

project save store (as is the case for a new user), the user

must supply project information to the project manager. If

the save store is present, the current project name and

current work file name are loaded. The LOAD PROJECT func-

tion then accesses the project database for the location of

the current work file. This proc:ess also validates the

integrity of the database and save store. The LOAD PROJECT

function then sets the KBSEE current location within the

file system to the location obtained from the project

I1I - 10

..1 . ." , '.,. .. , ,, .',. ',. '; . .. ' ' ' ' .' '. - . . .' ' ".

()

4
J.J

ut-I '.4

0) 4-I

a))

,

0

-Iu

44" (0 04 . t

4\-

0 4J

0

40 -0 "

000

m- (o 04

0 4.

aM

a 0 .,41.

ww

a)~T m) U

U) 134 a0

database. This ensures that all the files associated with a

project are co-located. Access functions to the user

profile store and the project database are provided through

KBSEE menu item selections. These selections are: Start

Project, Select Project, List Projects, Display Project,

Change Work File, and Change User Profile. The access func-

tion SAVE CURRENT PROJECT is invoked automatically when the

user exits the KBSEE. This allows the project manager to

automatically establish the project, work file, location,

and profile whenever the user invokes the KBSEE.

Project Manager Data Structures. The project

database consists of records as shown below in Figure 3.4:

--

OF I Project Name I Location I Work File Name I
+---+

Figure 3.4 - Project Database Record

For multiple work files within a project, the record is

repeated with the same project name, but the location and

work file name may be different.

The project manager also maintains a store for user

profile information. The record format used by this store

is shown below in Figure 3.5:

I Edit Command I Compile Command I Link Command I
--

Figure 3.5 - User Profile Record

III - 12

Ip

The project save store record format is shown below in

Figure 3.6:

+---+
I Project Name I Work File Name I
+---+

Figure 3.6 - Project Save Store Record

Analysis Tool Design

Figure 3.7 shows the design of the analysis tool, KBSMA,

which follows the general architecture described in Figure

i.i. (Harmon, 1985:178) characterizes the development of

small (less than 200 rules) knowledge based system as a

sequence of six steps:

1) Select a tool and make an implicit commitment to
a particular paradigm.

2) Identify the problem and analyze the knowledge to
be included in the system.

3) Design the system. Typically, this involves

drafting a few rules.

4) Develop a prototype and test it.

5) Expand, test, and revise the system until im-
plementation is complete.

6) Maintain and update system as needed.

Most existing tools for developing knowledge based sys-

tems (i.e., OPS-5, M.1, S.1, KEE, ART) handle the most com-

mon paradigm: diagnosis and prescription. (Harmon,

1985:92-133) contains an excellent survey of commercial

tools and languages for developing knowledge based systems.

1i - 13

'A-A

041

4.)

0 '

o) 0)

o4 U)

00

-)

4

4J 0

4-) u(15 -H

The KBSMA problem area is of the diagnosis/prescription

type. Software modules are diagnosed and recommendations

for improvement are prescribed. This categorization implies

that the KBSMA can be designed without regard to the actual

implementation language, which will be a representation

scheme for rules in some form. The next step in the design

of the KBSMA is the design of the knowledge base.

Knowledge Base Design. The development of a knowledge

base often requires the skills of a knowledge engineer. A

knowledge engineer is essentially a person skilled in the

translation of rules, principles, and models used by a

domain expert into some knowledge representation scheme.

Whether or not a knowledge engineer is required in the

design and implementation of a knowledge based system

depends upon the communication skills of the knowledge

source (domain expert), the technical abilities of the sys-

tem sponsor/system developer, and the relative difficulty in

representing the domain knowledge in a form usable by the

target knowledge based architecture. In the case of the

KBSMA, the knowledge base was developed entirely without the

aid of a knowledge engineer. There is no need for an in-

termediary between the domain expert, the system developer,

and the customer, when all these functions are performed by

the same person. A knowledge engineer would not have con-

III - 15

Ji- •-¢ i>.i'.i'- '.'-.".% " ."-'i.i-->.''," .i'i-;'-i, -'. i' .;" "'.i"- ? -> -? - ". '.? -.- "-- - "--? . '. -'-".. .? - i -. '-.-.i" -" -'.-'..- " " -'.- -

tributed to the development of the KBSMA; in fact, filtering

information through a knowledge engineer would have hindered

the effort, rather than helped.

In order for the KBSMA to perform its function, informa-

tion about the software modules to be analyzed must be made

available to the inference mechanism. The best source of

this information is a centralized data dictionary. Since

the development of a data dictionary system is beyond the

scope of this investigation, the information is provided

manually in a format identical to the AFIT/ENG Software

Development Guidelines and Standards, Data Dictionary Entry

for a Module and used in SDW data dictionary research

efforts (Thomas, 1984) (Wolfe, 1985). This format is

implemented in the module data structure. The module data

structure contains the following information:

Module name
Project name
Module number
Description
Passed variables
Return value
Global variables used
Global variables changed
Files read
Files written
Calling modules
Modules called
Version
Date
Author
Filename
Coupling type
Cohesion type

III- 16

V.%.

Recommendation

The fields for the coupling, cohesion, and recommenda-

tion are not from the data dictionary entries, but are used

to hold this information once they have been determined by

the inference mechanism.

Since the AFIT/ENG Data Dictionary Entry for a Data

Element does not provide all the information necessary for

determining coupling and cohesion, another data structure is

necessary. The variable data structure contains fields for

the name of the variable, its type, and whether or not it is

a control variable. The control field must be provided by

the user since there is no way to directly infer whether or

not a variable is used for control by analyzing the data

dictionary entries.

Small prototypes of the KBSMA showed that coupling can

be inferred automatically from the data dictionary entries.

However, cohesion cannot be determined by examination of the

data dictionary entries. Ideally, cohesion should be

deduced automatically from a description of the function of

the module (i.e., "Natural Language" interpretation) or

directly from the code (i.e., an intelligent interpreter or

overall program structure analyzer). Since the development

of either of these are beyond the scope of this thesis ef-

fort, the KBSMA prompts the user until module cohesion is

determined.

III - 17
6%

Production Rules. The design of the production rules

for determining coupling and cohesion is discussed in this

section.

Coupling - There are four types of coupling: Data,

Stamp, Control, and Common. The rules for determining each

type are discussed in the following sections.

Common Coupling
IF

The module coupling type has not been determined
AND
A global variable is used

THEN
Set the coupling type to Common
AND
Recommend passing the data item as a parameter.

Control Coupling
IF

The module coupling type has not been determined
AND
The module passes a parameter
AND
The parameter is a control variable

THEN
Set the coupling type to Control
AND
Recommend modifying the module to not use imported
control information.

Stamp Coupling
IF

The module coupling type has not been determined
AND
The module passes a parameter
AND
The parameter is not of type Record
AND
The parameter is not a control variable

THEN
Set the coupling type to Stamp
AND
Recommend passing only required data item.

IIi - 18

Data Coupling
IF

The module coupling type has not been determined
AND
The module passes a parameter
AND
The parameter is of type Primitive
AND
The parameter is not a control variable

THEN
Set the coupling type to Data
AND
Recommend no improvement necessary.

Cohesion - Four questions are sufficient to determine

module cohesion. The answers to these questions are stored

in the cohesion answers data structure.

Cohesion Questions - These rules prompt the user for

the information required to determine cohesion.

One Function
IF

The module cohesion type has not been determined
THEN

Ask if the module is performing only one function
AND
Place answer in the one function field

Related Activites
IF

The module cohesion type has not been determined
AND
The module is not performing only one function

THEN
Ask if what relates the activities of the function
AND
Place answer in the activities related field.

Sequence Important
IF

The module cohesion type has not been determined
AND
The relation between activities is Data or Control

THEN

Il1 - 19

Ask if sequence is important
AND
Place answer in the sequence important field.

Same Category
IF

The module cohesion type has not been determined
AND
The activity relation is not Control or Data

THEN
Ask if the activities are in the same general
category
AND
Place the answer in the same category field.

Note that as few as one question or as many as all four

may be asked. In any case, the minimum number of questions

that allow the KBSMA to infer the cohesion is asked.

Functional Cohesion
IF

The module is performing only one function
THEN Set cohesion type to functional

Sequential Cohesion
*' IF

The module is not performing only one function
AND
The activities of the module are related by Data
AND
The sequence is important

THEN
Set cohesion type to sequential

Communicational Cohesion
IF

The module is not performing only one function
AND
The activities of the module are related by Data
AND
The sequence is not important

THEN
- Set cohesion type to communicational

III- 20

.-5. ' ' - - - , . . - , , -, - -. - . . - - - . . - . , . . . - - . - . - , , .

" Procedural Cohesion
IF

The module is not performing only one function
AND
The activities of the module are related by Control
AND
The sequence is important

THEN
Set cohesion type to procedural

Temporal Cohesion
IF

The module is not performing only one function
AND
The activities of the module are related by Control
AND
The sequence is not important

THEN
Set cohesion type to temporal

Logical Cohesion
IF

The module i-, not performing only one function
AND
The activities of the module are not related
AND
The activities are in the same general category

THEN
Set cohesion type to logical

Coincidental Cohesion
IF

The module is not performing only one function
AND
The activities of the module are not related
AND
The activities are in the same general category

THEN
Set cohesion type to logical

The coupling rules show how stored data can be used by

an inference mechanism without user interaction. The

cohesion rules demonstrate how a knowledge based system can

interact with the user to obtain information necessary to

make an inference.

111- 21

Conclusion

This chapter has described the design of the KBSEE and

the KBSMA. Data Flow Diagrams and Structured Listings were

used in the design documentation. General issues in

knowledge based system design were also discussed. Chapter

IV continues the description of this investigation by

presenting the implementation phase.

J.O

III- 22

.i .A

IV. Implementation

Introduction

This chapter discusses the implementation of the

Knowledge Based Software Engineering Environment, KBSEE, and

the Knowledge Based Software Module Analysis tool, KBSMA.

First, the system level implementation is presented, fol-

lowed by a more detailed discussion of each subsystem. The

final section of this chapter describes the integration of

tools into the KBSEE in general and the KBSMA in particular.

Source code listings are contained in Appendix C.

System Implementation

KBSEE is implemented on the AFIT Information Sciences

Laboratory's DEC VAX-11/780 superminicomputer under the

VAX/VMS operating system version 4.2. The ISL VAX was

chosen as the target machine for several reasons. First, it

was available and not overloaded compared to the other com-

puter systems at AFIT. Second, there are a wide variety of

languages and tools available on the system. Table 4.1

shows the languages and tools available on the ISL VAX.

Finally, it is the host machine of the SDW (Hadfield,

1982:17-18), on which KBSEE is based.

After deciding upon the host computer system, the selec-

,I 1.o

IV - 1

-4-

4-.1

Q)) U)

U)0 U)

w) w -0) w4

(a L-4 L U) .4-

4-)) m) -4 U) .U) U) 0

-4
0

U))~

41i

0 004VU

L" -4 *4t .- 4 -4 0. w -

.4J 0 to 0 0 U) 4-' Wz a)
(a U) '0 0- (n 4) U O

0

4n 4.- Io
-4' E-4 U)

U) -4) 4.- rc 2 3-4

0 V 0 04 EL E4 E-4.-
u ~WWE4 w

tion of an programming language was the next step in the

implementation phase. Available languages include C,

FORTRAN, Pascal, Ada, LISP, Prolog, and the Digital Command

Language (DCL). Of these, C was selected.

The most important reason for choosing the C programming

language was the nature of the language. The C language is

a general-purpose programming language which is manageable

because of its small size, flexible because of its ample

supply of operators, and powerful in its utilization of

modern control flow and data structures. It is a simple

language, but one rich in its variety of Run-Time Libraries

of functions and macros (Kernighan, 1978) (Helms, 1984).

The second reason for choosing C is that it is highly

portable, while providing access to the powerful VAX/VMS

environment. It would not be very difficult to rehost a

software system written in C to a new target computer sys-

tem.

The VAX C programming language contains a Run-Time

Library called Curses (DEC, 1985:26.1-26.39). The Curses

" library contains very powerful functions for controlling the

display of terminal screens. Rather than developing operat-

ing system specific or terminal specific routines for screen

management, greater program portability is obtained by using

the Curses library, which is implemented in many C compilers

on a wide variety of host computers.

IV- 3

.**-

J,

Furthermore, C was chosen because it handles strings

better than FORTRAN or Pascal, generates code which compiles

faster and runs faster than Ada (a much larger language)

(MacLennan, 1983), and because it generates executable code

that can be moved and run on any VAX/VMS computer whether or

not a the target system has a C compiler. This transpor-

tability cannot be accomplished by using a LISP or Prolog

interpreter. LISP and Prolog programs require a LISP or

Prolog interpreter for their execution. DCL is also inter-

preted (by the DEC Command Language Interpreter) and runs

very slow compared to an executable program. DCL programs

are actually series of executable programs, so the VAX/VMS

operating system must load and execute each DCL command

separately.

The particular implementation of C used is DEC's VAX C
'S

version 2.0. VAX C is a full and complete implementation of

the C language, as defined in (Kernighan, 1978). It also

provides access to the very rich VAX Run Time Library (in

addition to the C Run Time Library discussed in previous

paragraphs). The VAX-11 Run Time Library includes routines

to screen management, keyboard management, data conversions,

system management, and mathematics. The one keyboard

management routine and one system management routine were

used in the implementation of KBSEE. This is discussed in
.5-

detail below.

IV- 4

~ 5 5.

Display Manager Implementation

The display manager uses functions and macros from the

VAX-Il C Curses Run-Time Library to initialize, display, and

maintain the user's terminal screen. For a detailed

description of Curses and its functions and macros, see

(DEC, 1985). The Curses functions are used to divide the

terminal screen into windows, perform input and output in

the windows, display and remove windows, and update the

entire display.

Command Interpreter Implementation

As described in Chapters II and III, the command inter-

preter obtains valid menu selections from the display

manager. This is implemented through the Curses function

winch, which inputs a character from a given location on the

window. The command interpreter processes user command via

keyboard input. The VAX-11 Run-Time Library procedures

SMG$CREATE VIRTUALKEYBOARD and SMG$READ STRING are used for

reading keyboard function keys and controlling keyboard

input. These routines can read function keys on any ter-

minal defined in the VAX/VMS terminal definition table.

Currently, DEC VT-52, DEC VT-100, and DEC VT-200 series
terminals are defined. The KBSEE uses the numeric keypad of

the VT100 and the edit keypad of the VT-200 for single

keystroke commands, as shown in Figure 4.1.

IV - 5

• " " '" " " "' S' " "" """""""" ""' ' ' ""S~ .. - N ~ * .. "" ."."-"" '" .." .. ." " .""" '. ' "" 4."

.44.

0

cii H

E-1

-4-

aa)

Commands are validated, then appropriate execution

routines are invoked for the individual menu selections. If

the command is for an external tool or program, the VAX-lI

Run-Time Library procedure LIB$SPAWN is used to spawn a

subprocess for that tool or program. Details of actual

spawn procedures used for the various external routines are

shown in Appendix E.

Project Manager Implementation

The project manager is a collection of data files with

simple access functions for reading and writing to these

data files. The project database is implemented as a stand-

ard sequential file, which is searched on two fields,

project name and work file name. This implementation uses

standard C Run-Time Library routines. Use of a fully in-

dexed file would speed search in a large file, but would

cause loss of transportability since indexed file im-

plementations are not standardized in the C language

definition. The project database should contain less than

100 records, which should not require a noticable delay in

searching. There is a project database for each KBSEE user,

located in the default login directory with file name

KBSEE.PROJECTS.

The user profile information store is implemented as a

IV - 7

-.. z. 2.~. . .

ard C 1/O routines. Since the file contains only three

records, an indexed file would not be any faster since allI

records in the file are processed whenever the file is ac-

* cessed. There is a user profile store for each workfile in

a project, located in the same directory as the workfile.

The name of the user profile store is based on the name of

the workfile. For example, if the name of the workfile is

FOO.BAR, then the name of the profile store would be

FOO.PROFILE.

The project save store is also implemented as a standard

sequential file. The file contains only one record, with

two data items, so other file formats would not speed access

and would result in loss of transportability. The save

store is located in each user's default login directory with

name KBSEE.SAVE.

Tool Set Implementation

The tool set consists of VAX/VMS compilers, linkers, and

editors, the librarian, and symbolic debugger. Other tools

may be implemented in a manner similar to the tools supplied

by DEC. Tools are usually executable programs invoked by

* either a run command or a Command Language Interpreter (CLI)

command sequence. In either case, the executive spawns a

IVI

stor islocted n ech sers deaul loin drecorywit

subprocess in order to execute the tool. Since many tools

write to the screen, care is taken to avoid interfering with

the KBSEE display manager windows. This is accomplished by

using DCL command procedure file for the spawned subprocess.

The first line in the command procedure is a clear screen

command to erase the KBSEE menus. After the tool is invoked

and writes to the terminal screen, another clear screen

command is issued. Once the spawned process returns control

to the KBSEE, the display manager function UPDATEDISPLAY is

called to refresh the display of the KBSEE windows and menus

on the terminal screen. Tools which receive input from the

keyboard must have the VAX/VMS logical name SYS$INPUT

defined to be the terminal keyboard. By default, SYS$INPUT

is defined to be the command procedure file for executable

programs invoked from a command procedure. So, prior to the

actual tool invocation in the command procedure, the line

DEFINE/USERMODE SYS$INPUT SYS$COMMAND must appear. The

/USERMODE command qualifier makes the definition valid only

for the next program being executed. If this qualifier did

not appear on the DEFINE command, input would continue to

come from the keyboard, even when it should not. For tools

which are expected to generate error messages, the VAX/VMS

logical name SYS$ERROR should be defined to be a file. This

will allow the user to scroll though files whenever con-

IV - 9

r I-%

venient, rather than loose the error messages when the

screen is cleared after the tool is finished executing.

KBSMA Implementation

The KBSMA is implemented in a rule based production

system called OPS-5. Most commercial tools are rule based

systems (i.e., AL/X, ES/P Advisor, INSIGHT, M.l, Personal

Consultant, SeRIES-PC, EXPERT, KES, OPS-5, and S.1) or

hybrid systems containing rules within frames or a semantic

network (ART, KEE, and LOOPS) (Harmon, 1985:129-134). Since

all these commercial systems contain rules in some sort, the

implementation decision was dependant on the tools available

on the ISL VAX. At the time of KBSMA design and implemen-

tation, OPS-5 was the only commercial knowledge based system

development tool available on the ISL VAX. Also, the

prototype system developed for the Advanced Topics in Ar-

tificial Intelligence course, EENG 749, was implemented in

OPS-5 on the AFIT/SI SSC VAX/UNIX system.

OPS is an acronym for Official Production System. The

particular implementation of OPS-5 used is DEC VAX-11 OPS-5

version 1.0 (DEC, 1984). It generates executable images

which can be run in a manner identical to the code generated

by other compilers. This differs from many other im-

plementations of OPS-5 which require the user to first

IV- 10

-~~-r W u w . W%:

invoke a LISP interpreter, then load OPS-5 (as is the case

with the implementation on the AFIT/SI SSC VAX using Franz

LISP). The code generated by the VAX-li OPS-5 compiler is

optimized for faster execution.

Rules are easily transformed from their English descrip-

tions into OPS-5 syntax. The KBSMA user's manual in Appen-

dix F explains the process of transforming rules into OPS-5

productions.

The KBSMA module and variable data structures are imple-

mented as OPS-5 LITERALIZE structures. LITERALIZE is an

OPS-5 keyword that specifies that the next item in the list

is the name of a list data structure with the remaining

items in the list used as field names within the list; i.e.,

(literalize FOO BAR1 BAR2) would create a data structure

named FOO with items BAR1 and BAR2. The implementation of

the data structures are shown in Appendix D.

The module data structure is nearly a one-for-one

translation of the AFIT/ENG guideline standard (AFIT/ENG,

1984). The exceptions are the parameters passed and globals

used fields. To allow up to three of passed parameters and

global variables, there are three repeated fields for each:

passed-parameter-i, passed-parameter-2, passed-parameter-3,

global-i, global-2, and global-3. This is necessary because

although OPS-5 can represent more than one item in a field

IV - 11

-. -" ."'- -- -. " --'-""-"-""" ".e.. " - " .

as a list, it cannot separate list items for separate hand-

ling. This meant a tradeoff was necessary between a general

purpose data representation of a field with multiple items

with a very complicated access scheme requiring invokation

of external system routines or a simple repetition within

the data structure, allow-ng less flexibility, but a much

simpler access scheme. Simplicity was considered more im-

portant since the scheme could easily be extended and is

transportable. The user's manual contained in Appendix F

discusses implementation-specific details.

The knowledge base portion of the KBSMA is located in

the OPS-5 source file KBSMA.OPS which is compiled into the

executable program KBSMA.EXE. The knowledge base contains

the data structure definitions, production rules, and a

control procedure - startup. The startup procedure defines

an environment for OPS-5 execution which includes the type

of output, halt mechanism, and search/inference strategy.

The startup procedure also loads the situation data into

working memory. Situation data is contained in a file name

KBSMAINSTANCES.DAT. It contains data values for each of

the modules to be analyzed in the variable and module data

structures. The separate instance data allows the knowledge

base to be used to analyze any number of different modules.

The command procedure to invoke the KBSMA has the fol-

lowing lines:

IV - 12

,, -. . 'q-...-. • . " .*...-. '. ' ""'' .- '' - " " ' ' - ' ' ' . . -'- ". . -0 " . - - - '.

b ' * .. . , " . 5".. ' ' '- , * ' ' ' .' ' ' '- . S *
°

, ' " . '' , " - "

$CLS p

$DEFINE/USER SYS$INPUT SYS$COMMAND

$RUN KBSMA

$CLS

$EXIT

The name of the command procedure is KBSEEANALYZE.COM,

which is located in the KBSEE system directory, KBSEE$SYS-

TEM.

Conclusion

This chapter discussed the implementation of the

Knowledge Based Software Engineering Environment, KBSEE, and

the Knowledge Based Software Module Analyzer, KBSMA. The

choice of host computer system was discussed, as was the

choice of implementation language. Detailed implementation

decisions were presented for each KBSEE major function and

data structure. Implementation and integration of new tools

were discussed, with the KBSMA presented as a detailed ex-

ample of tool implementation. The next chapter, Chapter V,

concludes this thesis effort and provides recommendations

for further investigation.

I

IV - 13

V. Conclusion and Recommendations

Introduction

This thesis investigation has described the development

of a Knowledge Based Software Engineering Environment,

KBSEE, and a Knowledge Based Software Module Analysis tool,

KBSMA. KBSEE is consists of several interacting components,

including a set of software development tools such as com-

pilers, editors, linkers, and debuggers. The KBSMA analyzes

software modules for the software engineering parameters of

coupling and cohesion. The primary goal of this investiga-

tion is an easily useable environment for developing

0software.

This final chapter presents a short summary of the sys-

tem development, followed by an analysis relating the

developed system to the standards described in Chapter 1.

Finally, recommendations for future investigations are

presented.

Development Summary

KBSEE and KBSMA were built using a variation of the

classic software development life cycle along with ex-

ploratory programming/rapid prototyping. First, an ex-

tensive literature search was conducted to gain a better

V- 1

S.

understanding of knowledge based systems, software develop-

ment environments, the software development process and its

problems, and how these problems might be diminished through

automation. The information gleaned from this search, along

with prior knowledge from experience and observation, was

used to perform the requirements analysis phase. In this

phase, sets of requirements were defined for the environment

as a whole, for each subsystem, and for the analysis tool.

After generating the initial sets of requirements,

prototypical systems were developed and implemented. A

cyclic process of design and implementation was performed

until a satisfactory system was completed. Feedback from

the prototypes provided useful information about the com-

pleteness and consistency of the requirements, which were

modified, if necessary. Throughout implementation, routines

were tested as they were developed. This informal testing

was conducted on the isolated module to show that it per-

formed as intended and on the module as it was integrated

into the environment to ensure that its system interface

behaved in the intended manner. Although no formal testing

was performed, the informal tests do suggest that the KBSEE

and KBSMA are reasonably error-free.

• V- 2Ij
V°

.. .,.*J(. * * : - - - . * . * . -- u i

Analysis of the Current System

The KBSEE is built upon SDW concepts and is designed to

free the user from having to remember file names and

locations and re-enter commonly used commands. It has a

more efficient human-computer interface than does the SDW

and performs its functions considerably faster. Its tool

set is sufficient for building software systems in a variety

of languages, including C, FORTRAN, Pascal, and Assembler.

The software analysis tool determines a module's

coupling and cohesion. It can obtain information through

interaction with the user and through access to the

situation file.

The KBSEE is not completely implemented and needs to be

extended. It needs a centralized data dictionary and

appropriate access functions to avoid having to interact

with the user for module information and to maintain

consistency checks throughout software development. Not all

menu selections are implemented, although what is currently

implemented does show the utility of the KBSEE and the

KBSMA, so both portions of this investigation should be

considered successful. The next section discusses

recommendations for future investigation.

*V- 3

Recommendations for Future Investigation

Not all the requirements have been fulfilled by the

design and not all the design has been implemented. The

lack of a centralized data dictionary and access functions

is the primary reason for the incompleteness. Also, formal

testing needs to be accomplished. Complete testing is not

especially difficult, but is extremely time-consuming and

even then, does not guarantee the absence of errors.

As discussed earlier, future work needs to be done in

the area of a data dictionary and access functions for the

KBSEE. Hopefully, the system would be based on the AFIT/ENG

guidelines to ensure that the tool would be useful to the

KBSEE and KBSMA. A new data dictionary system could also be

the basis for new tools for consistency checking and

automated graphic output of structure charts, DFDs, SADTs,

etc.

The analysis of software modules for parameters other

than coupling and cohesion would be an excellent topic for

future investigation; i.e., determining the time/space

complexity of a module and then using module complexity to

determine an entire program's overall complexity is a

difficult, but interesting problem. Determining the time

complexity would require analyzing the loops and branches of

the module's algorithms. For example, if the current level

V- 4

-k

o. .W q 7

is a loop and the current level is within the scope of a

previous loop, then the time complexity of the current level

is of order n-squared. To obtain the type of information

required for this analysis would require parsing of the

programming language syntax. Even then, there are

subtleties that would require human analysis. Such an

investigation would probably require techniques from

computational analysis, artificial intelligence, and

compiler theory.

The list of useful software development tools that could

be developed for the KBSEE, or any other environment, is

virtually endless. A future investigation of what tools

should be in an environment would prove invaluable and

would, in turn, stimulate more work on software tools.

The incorporation of Artificial Intelligence technology

into software engineering environments could be very useful,

as is demonstrated by the KBSMA developed in this effort.

Future work needs to be done to clarify the role of AI in

software engineering problems.

, Conclusion

This thesis effort has shown the utility of combining

Software Engineering and Artificial Intelligence

technologies. The benefits of using off-the-shelf tools in

S .V - 5

'; l :, ; i < 2,: , i ;X............,.. .. .,.,......-\

a reasonably efficient environment were also demonstrated.

All in all, this investigation proved to be a success.

-a

.-4.- . " . . ., - - . .". . . , " . . " , , , . .' . , . . . , • . , ,' ., , . .. , .

I,:-. L - : -,- , ,- L . . .-. !~ ~ Y * -j ', ~ . ~- . - o : - - .. ,

Data Dictionary

for the

Knowledge Based

- °

".[Software Engineering Environment

(KBSEE)

A 1

.°4

Data Dictionary - KBSEE

NAME: copyright win
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for copyright window

REFERENCED BY MODULES: bld_copyright

NAME: curr dat
TYPE: record of type menu_data
SCOPE: Global

'5

USE: stores menu position information for the current menu

REFERENCED BY MODULES: chk left right, chk move, get-item,
main, chkmain_1, chkmain_2, chk-main_3, chkmain_4

NAME: currproj
TYPE: record
SCOPE: Global

RECORD ITEM NAME: project name
RECORD ITEM TYPE: array of 20 characters
RECORD ITEM USE: stores name of current project

RECORD ITEM NAME: location
RECORD ITEM TYPE: array of 64 charactersRECORD ITEM USE: stores location of current project

RECORD ITEM NAME: work file
RECORD ITEM TYPE: array of 32 characters
RECORD ITEM USE: stores name of current work file

REFERENCED BY MODULES: chk save-file, exec start_project,
get_project, save_project

C.

A- 2

5,

Data Dictionary - KBSEE

NAME: curr win
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for current window

REFERENCED BY MODULES: chk leftright, chk main sel,
chkmove, getitem, main

NAME: def head
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for default window header

REFERENCED BY MODULES: blddef, display_menus,
update_display

NAME: def win
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for default window

REFERENCED BY MODULES: blddef, display-menus,
updatedisplay

NAME: exitflag
TYPE: integer
SCOPE: Global, used Local as alias exit now

USE: flag set to exit system

REFERENCED BY MODULES: main

A- 3

Data Dictionary - KBSEE

NAME: found
TYPE: integer
SCOPE: Local

USE: flag set to when a comparison is true

REFERENCED BY MODULES: getproject

NAME: help win
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for help window

REFERENCED BY MODULES: bld_help

************************************* *** ********

NAME: i
TYPE: integer
SCOPE: Local

USE: loop control variable

REFERENCED BY MODULES: chksavefile, execstartproject,
get_project, save_project

NAME: inp
TYPE: single character
SCOPE: Local

USE: temporary storate location for string to be converted
into a descriptor type for use in RTL routines

REFERENCED BY MODULES: main

A- 4

Data Dictionary - KBSEE

4~

************ ****** *** *** ********* *** ************ ** *

NAME: input
TYPE: descriptor
SCOPE: Local

USE: descriptor for a string for use in RTL routines

REFERENCED BY MODULES: main

NAME: kid
TYPE: unsigned integer
SCOPE: Global

USE: keyboard identifier used by Screen Mgt RTL routines

REFERENCED BY MODULES: main

****************** ************************************** ***

NAME: m len
TYPE: integer
SCOPE: Local

USE: length of modifiers for RTL routine

REFERENCED BY MODULES: main

NAME: modifiers
TYPE: integer
SCOPE: Local

USE: I/O RTL routine modifiers

REFERENCED BY MODULES: main

"-'- A- 5

-~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~K -...................V WN r7rr v~r;r~w wJr ~.r*-j-

Data Dictionary- KBSEE

NAME: main data 1
TYPE: record of type menudata
SCOPE: Global

USE: stores menu position information for main menu 1

REFERENCED BY MODILES: chk leftright, main

NAME: main data 2
TYPE: record of type menu-data
SCOPE: Global

USE: stores menu position information for main menu 2

REFERENCED BY MODILES: chk left_right, main

NAME: main data 3
TYPE: record of type menudata
SCOPE: Global

USE: stores menu position information for main menu 3

REFERENCED BY MODILES: chk left right, main

NAME: main data 4
TYPE: record of-type menu data
SCOPE: Global

USE: stores menu position information for main menu 4

REFERENCED BY MODILES: chk left right, main

. '.A - 6
°o4- - . % -" ". % -"° % ' - . • '• .- " , ' - , • ,..

' L* a *-**-- **--* -************ -** •********* "***** "******** "*** "**""***'-**"**'" **, •

Data Dictionary- KBSEE

q

NAME: main menu 1
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for main menu_1

REFERENCED BY MODULES: chk left-right, chk mainsel,
bld menu_1, display_menus, updatedisplay, main

NAME: main menu 2
TYPE: WINDOW (defined by Curses pa-kage)
SCOPE: Global

USE: stores window data for main menu_2

REFERENCED BY MODULES: chk leftright, chk main sel,
bld_menu_2, displaymenus, updatedisplay

** ***********

~** ***********

NAME: main menu 3
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for main menu_3

REFERENCED BY MODULES: chk leftright, chkmainsel,
bldmenu_3, display-menus, updatedisplay

NAME: main menu 4
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for main menu_4

REFERENCED BY MODULES: chk left right, chk mainsel,
bld_menu_4, displaymenus, update-display

A- 7

g. ~ & z n ssw tr j.t .gc .- . ..-.. .-.... . .-

Data Dictionary - KBSEE

NAME: menu data
TYPE: record type definition
SCOPE: Global

RECORD ITEM NAME: min_y
RECORD ITEM TYPE: integer
RECORD ITEM USE: minimum vertical range of menu items

RECORD ITEM NAME: max_y
RECORD ITEM TYPE: integer
RECORD ITEM USE: maximum vertical range of menu items

RECORD ITEM NAME: curr_y
RECORD ITEM TYPE: integer
RECORD ITEM USE: cursor position within vertical range

RECORD ITEM NAME: curr x
RECORD ITEM TYPE: integer
RECORD ITEM USE: cursor position within horizontal range

RECORD ITEM NAME: menu item
RECORD ITEM TYPE: array of 17 characters
RECORD ITEM USE: name of current menu item

REFERENCED BY DATA STRUCTURES: curr dat, main data_1,
main data_2, main data_3, main data_4-

************************ ** ******************************** *

NAME: menu hdr 1
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for main menu header 1

REFERENCED BY MODULES: bldmenu hdr, display_menus,
updatedisplay

A -8

a - .

Data Dictionary - KBSEE

NAME: menu hdr 2
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for main menu header 2

REFERENCED BY MODULES: bld_menuhdr, displaymenus,
updatedisplay

NAME: mesghead
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for message window header

REFERENCED BY MODULES: bld_mesg, display-menus,
updatedisplay

NAME: mesgwin
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for message window

REFERENCED BY MODULES: bld_mesg, displaymenus,
update display, chk main sel, chk save file,
exec start_project, get_project, chk_main_1, chkmain_2,
chk main 3

NAME: position
TYPE: integer
SCOPE: Local

USE: current cursor position inside menu string

REFERENCED BY MODULES: get item

1" A- 9

• -. ~' . .~..V

Data Dictionary - KBSEE

NAME: proj
TYPE: array of 20 characters
SCOPE: Local

USE: name of project read from project database

REFERENCED BY MODULES: getproject

NAME: ret val
TYPE: integer (used as boolean)
SCOPE: Local

USE: return value set true if save file exits

REFERENCED BY MODULES: chk save file

NAME: status
TYPE: integer
SCOPE: Local

USE: return status of RTL routines

REFERENCED BY MODULES: main

NAME: sts head
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for status window header

REFERENCED BY MODULES: bld sts, displaymenus,
update display

A 10

4

Data Dictionary - KBSEE

NAME: sts win
TYPE: 4INDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for status window

REFERENCED BY MODULES: bld_sts, displaymenus,
update_display

NAME: terminator
TYPE: short integer
SCOPE: Local

USE: keyboard function key terminator for SMG RTL routine

REFERENCED BY MODULES: chkleft-right, chkmove,
chkmainsel, main

NAME: tmp_x

TYPE: integer
SCOPE: Local

USE: temporary store for cursor horizontal position

REFERENCED BY MODULES: get-item

A - 11

.,.o . *. . .

Structure Listing

for the

Knowledge Based

Software Engineering Environment

(KBSEE)

B -

Structure Listing - KBSEE

Level Module Number Couples

0 main 0.0

1 init 1.0

2 bld help 1.0.0

2 bldcopyright 1.0.1

2 bld main 1.0.2

3 bld menu hdr 1.0.2.0

3 bld menu_1 1.0.2.1

3 bld menu_2 1.0.2.2

3 bld menu 3 1.0.2.3

3 bld menu 4 1.0.2.4

2 bldmesg 1.0.3

2 bldsts 1.0.4

2 bld def 1.0.5

1 display_menus 1.1

1 chk save file 1.2

1 get_project 1.3

1 getprofile 1.4

1 get_item 1.5 currwin, currdat

1 chk move 1.6 terminator

1 chkleftright 1.7 terminator

1 chk main sel 1.8 exit now, termi.tator

2 chk main 1 1.8.0

3 execbldprogram 1.8.0.0

B- 2

Structure Listing - KBSEE

Level Module Number Couples

3 exec-edit 1.8.0.1

3 exec_compile 1.8.0.2

3 exec-link 1.8.0.3

3 exec-run 1.8.0.4

3 exec_display_error 1.8.0.5

3 exec start_project 1.8.0.6

3 exec-select project 1.8.0.7

3 exec -list_projects 1.8.0.8

3 exec-display_project 1.8.0.9

2 chk main_2 1.8.1

3 exec-work-file 1.8.1.0

(V3 exec user profile 1.8.1.1

3 exec introduction 1.8.1.2

2 chk-main_3 1.8.2

3 exec-debugger 1.8.2.0

3 exec-analyer 1.8.2.1

3 exec-librarian 1.8.2.2

3 exec_printer 1.8.2.3

3 exec text format 1.8.2.4

2 chk main_4 1.8.3

3 exec_spawn 1.8.3.0

3 exec-exit 1.8.3.1

1 save-project 1.9

B-3

Structure Listing - KBSEE

Level Module Number Couples

0 update display 0.1

B 4

ZL|

Source Code Listing

for the

Knowledge Based

Software Engineering Environment

(KBSEE)

C I

Source Code Listing - KBSEE
• N

* DATE: 2/20/86 *
* VERSION: 1.0 *

* TITLE: KBSEE Main Executive Routines *
* FILENAME: kbsee.c *

* * COORDINATOR: Capt Dave Fautheree *
*- * PROJECT: KBSEE (M.S. Thesis) *

" * OPERATING SYSTEM: VAX/VMS version 4.2 *
* LANGUAGE: VAX-lI C *
* USE: CC KBSEE *
* CONTENTS: *
Schk main 1-process selections for main menu 1

* * chk main 2 - process selections for main menu 2 *chk main 3 - process selections for main menu 3S * chk-main-3 - process selections for main menu 3 *

* exec- analyzer - execute KBSMA analysis tool *
* chk main 4 - process selections for main menu 4 *
* main - main executive routine *

* * FUNCTION: Implements main executive functions *
* and command interpretation. *

**

.-- o

* , - **r- - - - - - - n fta.t m f d ~ - e . 2 .

RD-R172 467 AN ANALYSIS TOOL IN R KNOWLEDGE BASED SOFTNARE 21'2
ENGINEERING ENVIRONMENT(U) AIR FORCE INST OF TECH
MRIGHT-PATTERSON AFA OH SCHOOL OF ENGI.. 0 N FAUTHEREE

UNCLSSIFIED 21 MAR 86 RFIT/GCS/ENG/86N-2 F/O 9/2 NL

mhmmhhmmmhhhhu

soEEEnhhEmEmE EE Dh

1111 ~ 3 o 112.0
j*I .MW

'IIIIL25

-71Y V - -

Source Code Listing -KBSEE

#include curses 1* Curses Screen Management Definitions *
#include descrip /* Descriptor Definitions *
#include iodef 1* I/O Status Definitions *

#define ITEM LENGTH 16
#define AND &&
#define OR I
#define EQ -

#define NEQ 1

#define SIZE NAME 20
* #define SIZE LOC 64

#define SIZE WORK FILE 32

struct curr proj

char project name[SIZE NAME];
char locatiord[SlZE LOC'T;
char work file[SIZE WORK FILE];

* struct menu-data

int miny;
int max_y;
int curr_y;
int curr x;
char menu-item[ITEMLENGTH + 1];

stut eu aa an aa 10;, ,0

struct menu data main data 1 = f0, 9, 0, 0, "}

struct menu data main data23 = {0, 2, 0, 0, "}
struct menu-data main data 3 = f0, 4, 0, 0, "1

WINDOW *curr win;
sruct menu-aata curr-dat;

WINDOW *menu hdr 1,
*menu hdr2,
*main menu_1,
*main menu_2,
*main menu_3,
*main-menu_4,
*mesg head,
*meSg win,

c- 3

I-,

Source Code Listing - KBSEE

*stshead,
*sts win,
*def win,
*def-head,
*help win;
*copyrightwin;

int SMG$CREATE VIRTUAL KEYBOARD(;
int SMG$READ STRING();
int LIB$SPAWN();

char *project file;
int exit-flag = FALSE;
unsigned kid;

#include "KBSEE EXEC.C" /* Include Executive Modules */
#include "KBSEE-PROJ.C" /* Include Project Mgt Modules */

C -4

i : ,* *.1,. . * ..- * .*. , ,-...i

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: chk main 1 *
*[* MODULE NUMBER:-1.8.0 *

.* DESCRIPTION: checks menu selections for main menu 1 *

.* PASSED VARIABLES: *

* RETURNS:
* GLOBAL VARIABLES USED: curr dat, mesg win
* GLOBAL VARIABLES CHANGED: *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: exec_bld_program, exec-edit, execcompile, exec link, *

execrun, exec displayerror, exec startproject, *
* exec select_project, exec-list_projects, *
* exec-display_project *

* " * CALLING MODULES: chk main sel *

AUTHOR: Capt Dave Fautheree *
* HISTORY: *

S * *

chk main _1)
I - _

if (strcmp(curr dat.menu item, "Build Program ") EQ 0)
wprintw(mesg_win, "\nBuilding Program");

else
if (strcmp(curr dat.menu item, "Edit ") EQ 0)

wprintw(mesgwin, "\nEditing Program");
else
if (strcmp(curr dat.menu item, "Compile ") EQ 0)

wprintw(mesg win, "\nCompiling Program");
else
if (strcmp(curr dat.menu item, "Link ") EQ 0)

wprintw(mesgwin, "\nLinking Program");
else
if (strcmp(curr dat.menu item, "Run ") EQ 0)

wprintw(mesgwin, "\nRunning Program");
else

C- 5

I

Source Code Listing - KBSEE

if (strcmp(curr dat.menu item, "Display Errors ")EQ 0)
wprintw(mesg_win, "*nDisplaying Errors");

else
if (strcmp(curr_dat.menu -item, "Start Project ")EQ 0)

esexec-start_projecto;

if (strcmp(curr dat.menu item, "Select Project ")EQ 0)

wpit msgwin, "\nSelect Project");
elseitPrjct)

if _srm~urdat.menu item, "List Projects ")EQ 0)

else ritmegwn
\nitPoes

if (strcmp(curr dat.menu item, "Display Project ")EQ 0)
wprintw(mesg_win, "\nDisplay Project)

'IC- 6

Source Code Listing - KBSEE

/** ************

* DATE: 2/20/86 *
* VERSION: 1.0

* NAME: chk main 2
* MODULE NUMBER: 1.8.1 *
* DESCRIPTION: checks menu selections for main menu 2 *
* PASSED VARIABLES: *
* RETURNS: *
* GLOBAL VARIABLES USED: curr dat, mesg_win *
* GLOBAL VARIABLES CHANGED:
* FILES READ: *
* FILES WRITTEN:
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: exec work file, exec user_profile, exec introduction *

* CALLING MODULES: chk main sel *

* AUTHOR: Capt Dave Fautheree *

* HISTORY: *

*

chk main 2()

if (strcmp(curr dat.menu item, "Work File ") EQ 0)

wprintw(mesg_win, "\nWork File
")

if (strcmp(curr dat.menu item, "User Profile ") EQ 0)
wprintw(mesgwin, "\nUser Profile ");

else
if (strcmp(curr dat.menu_ item, "Introduction ") EQ 0)

wprintw(mesg_win, "\nlntroduction ");

I

C- 7

4

Source Code Listing - KBSEE

/ ***

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: chk main 3 *
* MODULE NUMBER: 1.8.2
* DESCRIPTION: checks menu selections for main menu 3 *
* PASSED VARIABLES:
* RETURNS:
* GLOBAL VARIABLES USED: currdat, mesg_win
* GLOBAL VARIABLES CHANGED: *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: execdebugger, exec_analyzer, execlibrarian, *
* exec_printer, exec textformat *

* CALLING MODULES: chk main sel *

* AUTHOR: Capt Dave Fautheree *

HISTORY: *

chk main 3()
I - _

if (strcmp(curr dat.menu item, "Debugger ") EQ 0)
wprintw(mesg_win, "\nDebugger

else .

if (strcmp(curr dat.menu item, "Analyzer ") EQ 0)
exec analyzero;

else
if (strcmp(curr dat.menu item, "Librarian ") EQ 0)

wprintw(mesg_win, "\nLibrarian
else
if (strcmp(curr dat.menu item, "Printer ") EQ 0)

wprintw(mesg_win, "\nPrinter
else
if (strcmp(curr dat.menu item, "Text Formatting ") EQ 0)

wprintw(mesg_win, "\nText Formatting");

C- 8

Source Code Listing - KBSEE

S / **k*************************************

* DATE: 2/20/86 *

* VERSION: 1.0 *

* NAME: execanalyzer *
* MODULE NUMBER: 1.8.2.1 *
* DESCRIPTION: executes KBSMA analysis tool *
* PASSED VARIABLES: *

* RETURNS:
* GLOBAL VARIABLES USED: *
* GLOBAL VARIABLES CHANGED: *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: updatedisplay *

* CALLING MODULES: chk main_3 *

* AUTHOR: Capt Dave Fautheree *
* HISTORY: *

4 **/

execanalyzer()

char inp;
$DESCRIPTOR(input, "@kbsee$system:kbsee-analyze.com");

lib$spawn(&input,0,0,0,0,0,0,0,0,0,0,0);

updatedisplay(;

C - 9

z'- .K . v.- ' - - '-,q. -.-', .. -. ," , < -,. . . .- .. . ',..... .-.. ,.. ,, -..- , .. , - , .. .- , .. .- ,, ..- .. . - . , ,- . .

Source Code Listing - KBSEE

* DATE: 2/20/86

** VERSION: 1.0 *

* NAME: chk main 4 *
* MODULE NUMBER: 1.8.3 *
* DESCRIPTION: checks menu selections for main menu 4 *
* PASSED VARIABLES: *
* RETURNS: *
* GLOBAL VARIABLES USED: curr dat, mesg_win *
* GLOBAL VARIABLES CHANGED: *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: execspawn, execexit *

* CALLING MODULES: chk main sel *

AUTHOR: Capt Dave Fautheree *
* HISTORY:*

chk main 4()

if (strcmp(curr dat.menu item, "Spawn to CLI ") EQ 0)
wprintw(mesg_win, "\nSpawn to CLI ");

else
if (strcmp(curr dat.menu item, "Exit ") EQ 0)

wprintw(mesgwin, "\nExit

C - 10

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: main *

* MODULE NUMBER: 0.0 e* DESCRIPTION: main executive routine*

* PASSED VARIABLES: *
* RETURNS: *
* GLOBAL VARIABLES USED: curr dat, currwin, kid, main data_1, *
* main menu 1 *
* GLOBAL VARIABLES CHANGED: curr_wTn, currdat *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: init, display menus, chksavefile, getproject, *
* getprofile, get_item, chk_move, chkleftright, *
* chk main sel *

* CALLING MODULES: *

AUTHOR: Capt Dave Fautheree
r. , HISTORY:*

main()

int status;
char inp;

$DESCRIPTOR(input, inp);
int m len = 1;
unsigned modifiers;
short int terminator;

status = SMG$CREATE VIRTUAL KEYBOARD(&kid);
modifiers = (IO$MESCAPE + IO$MNOECHO + IO$MPURGE);

init();

display_menuso;

currwin = main menu_1;

C 11

Source Code Listing -KBSEE

curr-dat =main-data_1;

if (chk-save fileo)

get project();
1* get_profile();

whl(!xt1lg
I

wrefresh(mesg win);
wrefresh(sts win);
do

get_ item(curr win, &curr dat);
status = SMGSREADSTRING-

(&kid,&input,O,&m-len,&modifiers,O,O,O,&terminator,O);
chk-move(terminator);

Iwhile((status) AND
(terminator NEQ SMG$KTRM SELECT) AND
(terminator NEQ SMGSK TRM-KP7) AND
(terminator NEQ SMG$K-TRMvIKP3) AND

*(terminator NEQ SMG$K TRM RIGHT) AND
(terminator NEQ SMG$K-TRM-KP1) AND
(terminator NEQ SMGSK TRM LEFT) AND
(terminator NEQ SMG$K TRN REMOVE) AND
(terminator NEQ SMG$K-TRM-PF3) AND
(terminator MEQ SMG$K TRM HELP) AND
(terminator NEQ SMG$K-TRM-KP4));

chk left -right(terminator);
chk-Main-sel(&exit flag, terminator);

endwinol;

* save_projecto;

printf("B C N U\n");

C -12

-7 qr- ---

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* TITLE: KBSEE Executive Routines *
* for Command Interpreter and Display Manager *
* FILENAME: kbsee exec.c *
* COORDINATOR: Capt Dave Fautheree *
* PROJECT: KBSEE (M.S. Thesis) *
* OPERATING SYSTEM: VAX/VMS version 4.2 *
* LANGUAGE: VAX-lI C *
* USE: Include file for KBSEE.C *
* CONTENTS:
* bld copyright - builds copyright window *
* bld def - builds defaults window *
* bld-help - builds help window *
* bld-main - builds main menu windows *
* bld menu hdr - builds main menu header *
* bld-menu-i - builds main menu left column *
* bld-menu 2 - builds main menu second column from left *
* bld-menu 3 - builds main menu third column from left

bld-menu_4 - builds main menu column on right
bld-mesg - builds messages window

* bld sts -builds status window *
* chk left right - interprets left/right arrow keys *

* chk main sel - calls executor routines for menus *
* chk move - interprets up/down arrow keys & moves choice *
* displaymenus - displays windows on screeen *
* get item - highlights current item choice *
* 1nit - initializes windows *
* update display - updates screen after spawned process *
* FUNCTION: Implements executive functions for display management *
* and command interpretation. *

C -13

4

Source Code Listing - KBSEE

I ***

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: bld copyright *

* MODULE NUMBER: 1.0.1 *
DESCRIPTION: builds copyr'jht window

* PASSED VARIABLES: *
* RETURNS: *
* GLOBAL VARIABLES USED: copyright win *
* GLOBAL VARIABLES CHANGED: copyrightwin *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: *

* CALLING MODULES: init *

* AUTHOR: Capt Dave Fautheree *

* HISTORY:

bld copyright(){ -
copyright win = newwin(24, 80, 0, 0);
wsetattr(copyright win, REVERSE);
box(copyrightwin,' ', ,
wclrattr(copyright win, REVERSE);
mvwaddstr(copyright_win,-0, 32, "Copyright Notice");
wsetattr(copyright win, _BOLD);
mvwaddstr(copyright win, 4, 10,

"KBSEE - A Knowledge Based Software Engineering Environment");
wclrattr(copyright win, _BOLD);
mvwaddstr(copyright_win, 7, 24,

"Air Force Institute of Technology");
mvwaddstr(copyright win, 9, 16,

"Department of Electrical and Computer Engineering");
mvwaddstr(copyright win, 11, 11,

"Information Sciences/Artificial Intelligence Laboratories");
mvwaddstr(copyright win, 18, 3, "AFIT/ENG");
mvwaddstr(copyright win, 19, 3, "ATTN: Dr Gary B. Lamont");
mvwaddstr(copyright win, 20, 3, "Wright-Patterson AFB, OH 45433");

C -14

.N

Source Code Listing -KBSEE

wsetattr(copyright -win, _BOLD);
mvwaddstr(copyright win, 18, 46, "(C) Copyright 1985 by");
mvwaddstr(copyright-win, 19, 50, "David W. Fautheree");
mvwaddstr(copyright win, 20, 50, "Gary B. Lamont");
wclrattr(copyright win, _BOLD);
wrefresh(copyright-win);-
sleep(4);
wrefresh(copyright win);
delwin(copyright-w'ln);

C -15

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: bld def *
* MODULE NUMBER: 1.0.5 *
* DESCRIPTION: builds defaults window *
* PASSED VARIABLES: *
* RETURNS: *
* GLOBAL VARIABLES USED: def head, def win *
* GLOBAL VARIABLES CHANGED: defhead, def win *

* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT:*

* MODULES CALLED: *

* CALLING MODULES: init *

* AUTHOR: Capt Dave Fautheree *
* HISTORY: *

bld def()
{ -

def head = newwin(i, 40, 16, 0);* def-win = newwin(3, 40, 17, 0);

boxTdef head, ' ', '
mvwadds~r(def head, 0, 15, "Defaults");
mvwaddstr(def-head, 0, 0, "<");
mvwaddstr(def-head, 0, 39, ">");
mvwaddstr(def-win, 0, 1, "PROJECT:");
mvwaddstr(def-win, 1, 1, "WORK FILE:");
mvwaddstr(def-win, 2, 1, "DIRECTORY:");
wmove(def win, 0, 0);

C

C - 16

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: bld help *
* MODULE NUMBER: 1.0.1 *
* DESCRIPTION: builds help window *
* PASSED VARIABLES: *
* RETURNS: *
* GLOBAL VARIABLES USED: helpwin *
* GLOBAL VARIABLES CHANGED: help_win *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: *

* CALLING MODULES: init *

* AUTHOR: Capt Dave Fautheree *
* HISTORY: *

bid hel(){
helpwin = newwin(10, 20, 2, 50);
wsetattr(helpwin, REVERSE);
box(help win, ., .);
wclrattrThelp_win, REVERSE);
mvwaddstr(help_win, 0, 7, "Help");

}

C - 17

6
* ° o4 -,-00 - . . . - ~ .• -• . . . -

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: bld main *
* MODULE NUMBER: 1.0.2 *
* DESCRIPTION: builds main menu windows *

u * PASSED VARIABLES: *
i * RETURNS: *

GLOBAL VARIABLES USED: *I; * GLOBAL VARIABLES CHANGED: *
* FILES READ:

K. * FILES WRITTEN: *
K" * HARDWARE INPUT: *

"V * HARDWARE OUTPUT: *
* MODULES CALLED: bld menu-hdr, bld menu_1,2,3,4 *

* CALLING MODULES: init *

i * AUTHOR: Capt Dave Fautheree *
* HISTORY: *

bld main()
{ -f

bld menu hdr();
bld-menu-i();
bld menu 2();
bld-menu-3();
bld-menu-4();

C -18

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: bld menu hdr *
" * MODULE NUMBER: 1.0.2.0 *

*" * DESCRIPTION: builds main menu header *
* PASSED VARIABLES: *
* : RETURNS: *

GLOBAL VARIABLES USED: menu hdr 1, menu hdr 2
* GLOBAL VARIABLES CHANGED: menu hdri, menuhdr_2 *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: *

* CALLING MODULES: bld main *

.* AUTHOR: Capt Dave Fautheree *
* HISTORY: *:*
********************************** **** */

bid menu hdr()

menu hdr 1 = newwin(l, 80, 0, 0);
menu hdr-2 = newwin(l, 80, 1, 0);
wsetattrlmenu hdr 1, REVERSE);
box(menu hdr 1, '-', r ');
wclrattrTmenu hdr 1, REVERSE);
mvwaddstr(menu hdr 1,-0, 35, "Main Menu");
wsetattr(menu hdr 2, BOLD);
mvwaddstr(menu hdr_2,-0, 10,

"KBSEE - A Knowledge Based Software Engineering Environment");
wclrattr(menu hdr_2, -BOLD);

C -19

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: bld menu_1 *
* MODULE NUMBER: 1.0.2.1 *
* DESCRIPTION: builds main menu left column *
* PASSED VARIABLES: *
* RETURNS: *
* GLOBAL VARIABLES USED: main menu_1 *
* GLOBAL VARIABLES CHANGED: main menu 1 *

FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *

HARDWARE OUTPUT: *
* MODULES CALLED: *

.- . *

CALLING MODULES: bld main *

[- * AUTHOR: Capt Dave Fautheree*

HISTORY:

i

I bld menu l()

main menu 1 = newwin(ll, 16, 3, 8);
mvwaddstrTmain menu 1, 0, 0, "Build Program ");
mvwaddstr(main-menu-1, 1, 0, "Edit
mvwaddstr(main-menu-1, 2, 0, "Compile
mvwaddstr(main-menu1, 3, 0, "Link
mvwaddstr(main-menu-1, 4, 0, "Run ");
mvwaddstr(main-menu-1, 5, 0, "Display Errors ");
mvwaddstr(main-menu-1, 6, 0, "Start Project ");
mvwaddstr(main-menu-1, 7, 0, "Select Project ");
mvwaddstr(main-menu-1, 8, 0, "List Projects ");
mvwaddstr(main-menu-1, 9, 0, "Display Project");

,20

C - 20

-. ~~~~ ~V w,* -*. -w ~ -.-- ~

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: bld menu_2 *
* MODULE NUMBER: 1.0.2.2 *
* DESCRIPTION: builds main menu second column from left *
* PASSED VARIABLES: *
* RETURNS: *
* GLOBAL VARIABLES USED: main menu_2 *
* GLOBAL VARIABLES CHANGED: main menu 2 *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: *
* .

* CALLING MODULES: bld main *

* AUTHOR: Capt Dave Fautheree *
* HISTORY: *

bld menu 2()

main menu 2 = newwin(ll, 16, 3, 24);
mvwaddstrTmain menu 2, 0, 0, "Work File
mvwaddstr(main-menu-2, 1, 0, "User Profile ');
mvwaddstr(main-menu-2, 2, 0, "Introduction

C -21

**5 V

Source Code Listing - KBSEE

* DATE: 2/20/86 *

VERSION: 1.0

• NAME: bld menu 3 *
" * MODULE NUMBER:-1.0.2.3 *

* DESCRIPTION: ouilds mai, menu third column from left *
*" * PASSED VARIABLES: *

• RETURNS: *
• GLOBAL VARIABLES USED: main menu 3 *

• GLOBAL VARIABLES CHANGED: main menu 3 *
* FILES READ:
* FILES WRITTEN: *
• * HARDWARE INPUT: *
•. * HARDWARE OUTPUT: *
• MODULES CALLED: *

• CALLING MODULES: bld main *

* AUTHOR: Capt Dave Fautheree *
HISTORY: *

~*

bld menu 3()

main menu 3 = newwin(11, 16, 3, 40);
mvwaddstrTmain menu 3, 0, 0, "Debugger
mvwaddstr(main-menu_3, 1, 0, "Analyzer
mvwaddstr(main-menu_3, 2, 0, "Librarian
mvwaddstr(main menu 3, 3, 0, "Printer
mvwaddstr(main-menu-3, 4, 0, "Text Formatting");

.

S., C - 22

Source Code Listing - KBSEE

* *.

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: bld menu_4 *
* MODULE NUMBER: 1.0.2.4 *
* DESCRIPTION: builds main menu right column *
* PASSED VARIABLES: *
* RETURNS:
* GLOBAL VARIABLES USED: main menu_4 *
* GLOBAL VARIABLES CHANGED: main menu 4 *
' * FILES READ: *

* FILES WRITTEN: *
} * HARDWARE INPUT: *

* HARDWARE OUTPUT: *
* MODULES CALLED: *

* CALLING MODULES: bld main *

* AUTHOR: Capt Dave Fautheree *
* HISTORY: *

bld menu 4()

main menu 4 = newwin(ll, 16, 3, 56);
mvwaddstrrmain menu 4, 0, 0, "Spawn to CLI ");
mvwaddstr(main-menu-4, 1, 0, "Exit

C -23

Source Code Listing -KBSEE

* DATE: 2/20/86
* VERSION: 1.0*

* NAME: bid mesg*
* MODULE NUMBER: 1.0.3*

* DESCRIPTION: builds messages window*
* PASSED VARIABLES:
* RETURNS:
* GLOBAL VARIABLES USED: mesg_head, mesg_win*
* GLOBAL VARIABLES CHANGED: mesg_head, mesg_win*
* FILES READ:
* FILES WRITTEN:*
* HARDWARE INPUT:*
* .~-ARDWARE OUTPUT:*
* MODULES CALLED:*

* CALLING MODULES: init*

* AUTHOR: Capt Dave Fautheree*
* HISTORY:

bid mesg()

mesg-win = newwin(3, 80, 21, 0);
mesg_head =newwin(1, 80, 20, 0);
wsetattr(mesg head, _REVERSE);
box(mesg head)
wclrattrTmesg_head, _ REVERSE);
mvwaddstr(mesg_head, 0, 36, "Messages");
wmove(mesg win, 0, 0);
scrollok(mesg win, TRUE);

C -24

Source Code Listing - KBSEE

* DATE: 2/20/86 *
VERSION: 1.0 *

NAME: bld sts *
* MODULE NUMBER: 1.0.4 *
* DESCRIPTION: builds status window *

* PASSED VARIABLES: *
* RETURNS: *
* GLOBAL VARIABLES USED: sts head, sts win *

* GLOBAL VARIABLES CHANGED: sts head, sts win *
* FILES READ: *
* FILES WRITTEN: *

HARDWARE INPUT:*HARDWARE OUTPUT:
* MODULES CALLED: *

* CALLING MODULES: init *

AUTHOR: Capt Dave Fautheree
* HISTORY:*

bid sts()
{ -

sts head = newwin(1, 40, 16, 40);
sts win = newwin(3, 40, 17, 40);

boxTsts head, ' , ');
mvwaddstr(sts head, 0, 16, "Status");
mvwaddstr(sts-head, 0, 0, "<");
mvwaddstr(sts-head, 0, 39, ">");
wmove(sts win, 0, 0);
scrollok(sts win, TRUE);

C - 25

Source Code Listing - KBSEE

/ ***

* DATE: 2/20/86 *
* VERSION: 1.0 *
. .

* NAME: chk left right *
MODULE NUMBER: 1.1 *

* DESCRIPTION: changes menu when left/right arrow keys are pressed *
* PASSED VARIABLES: terminator *
* RETURNS: *
* GLOBAL VARIABLES USED: currwin, currdat *
* GLOBAL VARIABLES CHANGED: curr win, curr dat *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: *

* CALLING MODULES: main *

* AUTHOR: Capt Dave Fautheree ,
* HISTORY: *

chk left right(terminator)
short int t ninator;

if ((terminator EQ SMG$K TRM KP3) OR
(terminator EQ SMG$K-TRM-RIGHT))

wmove(curr win, curr dat.curr y, curr_dat.curr x);
wclrattr(curr win, _REVERSE); •
wprintw(curr win, "%s", curr dat.menu item);
wrefresh(curi win);
if (curr win EQ main menu 1){

curr win = main menu 2;
curr-dat = main-data-2;

else
if (currwin EQ main menu_2)

curr win = main menu 3;

C - 26

Source Code Listing -KBSEE

curr-dat =main-data_ ;

else
if (curr-win EQ main-menu_3)

curr win = main menu 4;
curr dat =main data_4;

else
if (curr win EQ main menu_4)

curr win = main menu_1;
curr dat = main data_1;

else
if ((terminator EQ SMG$K TRM KP1) OR

(terminator EQ SMG$KTRMLEFT))

wmove(curr win, curr dat.curr y, curr dat.curr x);
wclrattr(curr win, REVERSE);-
wprintw(curr w in, "i s", curr dat.menu item);9
wrefresh(curr win);
if (curr-win EQ main-menu_1)

curr win = main menu_4;
curr dat = main data 4;

else
if (curr-win EQ main menu_2)

curr win = main menu_1;
curr-dat = main-data_1;

else
if (curr-win EQ main-menu_3)

curr win = main menu_2;
curr-dat =main data_2;4

else
if (curr-win EQ main menu_4)

curr win =main menu_3;
curr-dat =main-data_3;

C -27

Source Code Listing -KBSEE

C -28I

Source Code Listing - KBSEE

DATE: 2/20/86
VERSION: 1.0

NAME: chk main sel*
* MODULE NUMBER: 1.8 *
* DESCRIPTION: calls appropriate menu selection processing routines

PASSED VARIABLES: exitnow, terminator
* RETURNS:* GLOBAL VARIABLES USED: curt win, main menu 1,2,3,4*
* GLOBAL VARIABLES CHANGED: *

FILES READ: *
FILES WRITTEN: *

* HARDWARE INPUT: *
HARDWARE OUTPUT:

MODULES CALLED: chk main_1, chk main_2, chk main_3, chk main_4

CALLING MODULES: main *

* AUTHOR: Capt Dave Fautheree *
* HISTORY: *

chk main sel(exit now, terminator)
int-*exit now;
short int terminator;

if ((terminator EQ SMG$KTRMKP7) OR (terminator EQ SMG$KTRM SELECT))

if (curr win EQ main menu_1)

chk mainl();

else
if (curr win EQ main menu 2)

chk main_2();

else
if (curr win EQ main menu 3)

chk main 3();

C - 29

~ ~ § i.k&~& * ~ ~ k7 ~-.. n-. . .- .~> <.

/ Source Code Listing - KBSEE

else
if (curr-win EQ main-menu_4)

chk-main_4();

else
if ((terminator EQ SMG$KTRM KP4) OR (terminator EQ SMG$KTRM HELP))
I

wprintw(mesg-win, "\nHelp selected");

* else
if ((terminator EQ SMG$KTRMPF3) OR (terminator EQ SMG$KTRM REMOVE))

- f
*exit-now =TRUE;

C 30

'4

Source Code Listing -KBSEE

* NAME: chk move
* MODULE NUMBER: 1.6

* DESCRIPTION: moves current menu item selection up or down
* PASSED VARIABLES: terminator
* RETURNS:
* GLOBAL VARIABLES USED: curr win, curr-dat*
* GLOBAL VARIABLES CHANGED: curr dat*
* FILES READ:*
* FILES WRITTEN:*
* HARDWARE INPUT:
* HARDWARE OUTPUT:
* MODULES CALLED:

CALLING MODULES: main

* AUTHOR: Capt Dave Fautheree
* HISTORY:

chk-move(terminator)
short mnt terminator;

if ((terminator EQ SMG$KTRMKP2) OR (terminator EQ SMG$KTRMDOWN))

wmove(curr win, curr dat.curr y, curr_dat.curr x); /* UnReverse Ite

wclrattr(curr win, REVERSE);
wprintw(curr -win, "Ts", curr-dat.menu-item);
curr dat.curr y = curr dat.curr_y + 1;
if (-curr -dat.-Curr_y > cEurr -dat.max_y) /* Wrap to top of menu ~

curr-dat.curr y = curr-dat.min y;

else I
if ((terminator EQ SMG$KTRNKP5) OR (terminator EQ SMG$KTRMUP))

wmove(curr win, curr dat.curr y, curr_dat.curr x); /* UnReverse Ite

wclrattr(curr win, _REVERSE);
wprintw(curr -win, "Ts", curr-dat.menu item);

C -31

Source Code Listing -KBSEE

curr dat.curr_y = curr dat.curr y - 1;
if (Ecurr-dat.curr_y < curr-dat.miin_y) 1* Wrap to bottom of men

curr-dat.curr y =curr-dat.max_y;

C 32

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: display_menus *
* MODULE NUMBER: 1.1 *
* DESCRIPTION: displays newly initialized menus on screen *
* PASSED VARIABLES: *
* RETURNS: *

GLOBAL VARIABLES USED: menu hdr_1,2 main menu_1,2,3,4 sts win,head *
*; mesg~winhead def-win,head *
* GLOBAL VARIABLES CHANGED: *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: *

* CALLING MODULES: init *

* AUTHOR: Capt Dave Fautheree *

I. HISTORY: *

displaymenus()
refresh);
wrefresh(menu hdr 1);
wrefresh(menu hdr 2);

wrefresh(main-menu i1);
wrefresh(main-menu-2);
wrefresh(main-menu-3);
wrefresh(main-menu-4);
wrefresh(mesg headT;
wrefresh(mesg win);
wrefresh(sts head);
wrefresh(sts win);
wrefresh(def-win);
wrefresh(def-head);

C - 33

...............................

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: getitem *
MODULE NUMBER: 1.5*MODESCRIPTION: reads and highlights current selection from menu *

* PASSED VARIABLES: *
* RETURNS:
* GLOBAL VARIABLES USED: *
* GLOBAL VARIABLES CHANGED: *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: *

* CALLING MODULES: main *

* AUTHOR: Capt Dave Fautheree *
* HISTORY:

get item(win, menu dat)
WINDOW *win;
struct menu-data *menudat;{

int position = 0;
Sint tmp-x = menu dat->curr x;

while(position < ITEMLENGTH)
{

wmove(win, menu dat->curr y, tmp x);
menu dat->menuitem[position] = winch(win);
tmp x += 1;
position += 1;

menudat->menu item[position] = 1\01;

wmove(win, menu dat->curr y, menu dat->curr x);
wsetattr(win, REVERSE); -
wprintw(win, "%s", menu dat->menu item);
wclrattr(win, -REVERSE);

C - 34

o o , . . . ,

Source Code Listing -KBSEE

wrefresh(win);

C- 35

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: init *
* MODULE NUMBER: 1.0 *
.. * DESCRIPTION: initializes windows *
" * PASSED VARIABLES: *

* RETURNS: *
* GLOBAL VARIABLES USED: *
* GLOBAL VARIABLES CHANGED: *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: *

* CALLING MODULES: main *

* AUTHOR: Capt Dave Fautheree *
* HISTORY: *

init()

initscr();

bld_help);
bld_copyright();
bld main();
bld mesg(;
bld sts();
bld-defo;

C - 36

.!2V ~ A ~ ~ , ***. ** **** * * *.* * * * * .-

Source Code Listing - KBSEE

* DATE: 2/20/86
* VERSION: 1.0

* NAME: update display
* MODULE NUMBER: 0.1
* DESCRIPTION: updates windows after spawn*

* PASSED VARIABLES: *
* RETURNS: *
* GLOBAL VARIABLES USED: menu hdr_1,2 main menu_1,2,3,4 sts win,head
* mesgwinhead def-win,head
* GLOBAL VARIABLES CHANGED: *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT:
* MODULES CALLED:

* CALLING MODULES: executive routines with spawns *

* AUTHOR: Capt Dave Fautheree *
HISTORY: *

update display()

touchwin(stdscr);
touchwin(menu hdr 1);
touchwin(menu-hdr-2);
touchwin(main-menu 1);
touchwin(main-menu-2);
touchwin(main-menu-3);
touchwin(main-menu-4);
touchwin(mesg headT;
touchwin(mesg head);
touchwin(mesg-head);
touchwin(mesg win);
touchwin(sts head);
touchwin(sts-win);
touchwin(defwin);
touchwin(def-head);

}

C - 37

Source Code Listing -KBSEE

C- 38

I

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* TITLE: KBSEE Project Manager Routines *
* FILENAME: kbsee_proj.c *
* COORDINATOR: Capt Dave Fautheree *
* PROJECT: KBSEE (M.S. Thesis) *
* OPERATING SYSTEM: VAX/VMS version 4.2 *
* LANGUAGE: VAX-lI C *
* USE: Include file for KBSEE.C *
* CONTENTS:
* bid_copyright - builds copyright window *
* FUNCTION: Implements executive functions for display management

and command interpretation.

C- 39

.. • .,~ ~ a . - ,. .T.V - - .- ,zT C 7" "" i "" ""

Source Code Listing - KBSEE

%4 * *

* DATE: 2/20/86 *
* VERSION: 1.0 *

• NAME: chk save file *
• MODULE NUMBER:-1.2 *
• DESCRIPTION: checks for save file and loads it, if found *
• PASSED VARIABLES: *
• RETURNS: TRUE if file exists *
• GLOBAL VARIABLES USED: curr-proj, mesgwin, sts-win *
• GLOBAL VARIABLES CHANGED: curr_proj *
• * FILES READ: kbsee.save *
• FILES WRITTEN: *
• * HARDWARE INPUT: *
• HARDWARE OUTPUT: *
• MODULES CALLED: *

• CALLING MODULES: main *

• AUTHOR: Capt Dave Fautheree *

• HISTORY:

int chk save file()

int i = 0;
FILE *fptr;
int ret val = FALSE;

wprintw(sts win, "\nChecking SAVE File...");
wrefresh(sts win);
if (access("kbsee.save", 4) EQ 0)

ret val = TRUE;
fptr = fopen("sys$login:kbsee.save", "r");
fgets(currproj.project name, SIZE NAME, fptr);
fgets(curr proj.work file, SIZEWORKFILE, fptr);
fclose(fptr);

while(currproj.project name[i] NEQ '
i++;

curr-proj.projectname[i] ='\';

C- 40

Source Code Listing -KBSEE

i = 0;
while(curr_proj.work_file~i] NEQ'

i++

curr-proj.work-file[i] = \;

- else

wprintw(sts win, "\nNo Current Project...");
* wrefresh(sts win);
* wsetattr(mesiwin, BLINK _REVERSE);

wprintw(mesg -win, "' nEstablish a Project and Profile IMMEDIATELY");
wclrattr(mesg-win, _BLINK -REVERSE);

wrfrshmsgwi)

wrefresh(mesg win);

return(ret-v-al);

C44

Source Code Listing KBSEE

* DATE: 2/20/86*
* VERSION: 1.0*

* NAME: exec start_project*
* MODULE NUMBiER: 1.8.0.6*

* DESCRIPTION: starts a new project*
* PASSED VARIABLES:*
* RETURNS:
GLOBAL VARIABLES USED: curr -proj, mesg_win, sts-win, def win
* GLOBAL VARIABLES CHANGED: curr-proj
* FILES READ:*
* FILES WRITTEN: kbsee.projects*
* HARDWARE INPUT:*
* HARDWARE OUTPUT:*
* MODULES CALLED:*

* CALLING MODULES: chk main 1*

* AUTHOR: Capt Dave Fautheree*
* HISTORY:*

exec_start_project()

FILE *fptr;

wprintw(mesg_win, "\nEnter Project Name:")
wscanw(mesg win, "Ws', curr_proj.project name);
wprintw(mesg_win, "Enter Project Location:")
wscanw(mesg_win, "Ws', curr_proj.location);
wprintw(mesg_win, "Enter Name of Work File:")

* wscanw(mesg_win, "Ws', curr_proj.work file);-

chdir(curr_proj.location);

wmove(def win, 0, 12);
wclrtoeolTdef win);
wmove(def win, 1, 12);
wclrtoeolTdef win);
wmove(def win, 2, 12);
wclrtoeolTdef-win);

C -42

Source Code Listing -KBSEE

wsetattr(def win, _REVERSE);
mvwaddstr(def win, 0, 12, curr_proj.project name);
mvwaddstr(def win, 1, 12, curr_proj.work file);
mvwaddstr(def-win, 2, 12, curr proj.locat ion);
wclrattr(def win, _REVERSE);,-

* wrefresh(def win);

* for (i = strlen(curr proj.project name); i < SIZE NAME; i+
curr proj.project name[i]-
_urproj project-nam~SZAE-1

for (i = strlen(curr pro] work file); i < SIZEWORKFILE; i+
curr proj.work fTle[i] -,-

currpro-.work file[SIZEWORKFLE-1=

for (i = strlen(curr proj.location); i < SIZELOC; i++)
curr proj.locationi II

currpro .location[SIZELOC -1]

- fptr = fopen("sys$login:kbsee.projects", "a");
fputs(curr_proj.project_name, fptr);
fputs(curr proj.work file, fptr);

('fputs(curr -proj .location, fptr);
fclose(fptr);

wprintw(sts -win, "\nProject Added Successfully..."1);
wrefresh(sts-win);

-. C- 43

Source Code Listing - KBSEE

* DATE: 2/20/86 *
* VERSION: 1.0 *

* NAME: getproject *
* MODULE NUMBER: 1.3 *
* DESCRIPTION: loads project from project database *
* PASSED VARIABLES: *

. RETURNS:
* GLOBAL VARIABLES USED: curr_proj, mesgwin, sts-win *
* GLOBAL VARIABLES CHANGED: curr_proj *

*. * FILES READ: kbsee.save *
* FILES WRITTEN: *

" * HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: *

* CALLING MODULES: main *

* AUTHOR: Capt Dave Fautheree *
* HISTORY: *

getproject()
I

FILE *fptr;
int i = 0;
int found = 0;
char proj[SIZE NAME];
char wfile[SIZEWORKFILE];

wprintw(sts win, "\nLoading Current Project...");

wrefresh(sts win);

fptr = fopen("sys$login:kbsee.projects", "r");

while ((feof(fptr) EQ 0) AND (found NEQ 1))I
fgets(proj, SIZE NAME, fptr);
fgets(wfile, SIZE WORK FILE, fptr);
fgets(currproj.location, SIZELOC, fptr);

while(proj[i] NEQ '

C- 44

Source Code Listing -KBSEE

proj[i] =-\'
i = 0;
while(wfileri] NEQ'

wfile~i] = \;
*i =O0;
* while(curr_proj.location~i] NEQ'

curr proj.location[i] = \;

wprintw(mesg win,"\nRead = %s,proj);
wprintw(mesg win,"I");

00 wprintw(mesg win,"\nRead = %s",wfile);
wprintw(mesg win,"I1");
wrefresh(mesg_win);

if ((strcmp(curr-proj .project name, proj) EQ 0) &&
(strcmp(curr proj.work file, wfile) EQ 0))

found =1;

-, if (found EQ 0)

wprintw(sts win,"\nProject Error -No Match");

else

* chdir(currproj .location);

* wmove(def win, 0, 12);
wclrtoeolTdef win);
wmove(def win, 1, 12);
wclrtoeol~def win);
wmove(def win, 2, 12);

* wclrtoeol~def-win);

wsetattr(def win, REVERSE);
mvwaddstr(def win, 0, 12, curr proj.project name);
mvwaddstr(def win, 1, 12, curr proj.work fife);

*mvwaddstr(def -win, 2, 12, curr proj.location);
wclrattr(def w in, _REVERSE);
wrefresh(def-win);-

C -45

Source Code Listing - KBSEE

wrefresh(sts win);
fclose(fpt r);}

• %°,

C - 46

• " ." ." .'.'.- -. -'-."> >=:=-.-.--" --. -.".". -'-. "..-.. -.' -'." v ".-..'...-'. "i-, .>'i . • .i. .<. .-.- '- .. ; ".-"--: :-i-'

Source Code Listing - KBSEE

/ ** ***** ***** *

* DATE: 2/20/86 *

* VERSION: 1.0

* NAME: save_project *
* MODULE NUMBER: 1.9 *
* DESCRIPTION: saves current project into save file *
* PASSED VARIABLES: *

* RETURNS:
* GLOBAL VARIABLES USED: curr_proj *
* GLOBAL VARIABLES CHANGED: *
* FILES READ: kbsee.save *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: *

* CALLING MODULES: main *

* AUTHOR: Capt Dave Fautheree *

* HISTORY:

save_project()

int i;
FILE *fptr;

delete("sys$login:kbsee.save");

fptr = fopen("sys$login:kbsee.save", "w");

for (i = strlen(currproj.project name); i < SIZENAME; i++)
curr proj.project name[i] = '

curr_proj.projectname[SIZENAME - 1] = '\0';

for (i = strlen(curr proj.work file); i < SIZEWORKFILE; i++)
curr proj.work fTle[i] = '-'

curr_proj.work file[SIZEWORKFILE - 1] ='\';

fputs(currproj.project name, fptr);
fputs(curr_proj.work file, fptr);

C - 47

V ..* * - * * *~ .. * ** .. ~ . .

Source Code Listing - KBSEE

fclose(fptr);

C 4

*6

..-. S.*

* V.

C - 48

I
* 'V

.'q-

Source Code Listing

for the

Knowledge Based

Software Module Analyzer

(KBSMA)

D- 1

,*

U

Source Code Listing - KBSMA

• * DATE: 11/9/85 *

VERSION: 1.1 *, ;*

TITLE: OPS-5 Data Structures and Production Rules for
a Prototype Software Engineering Analysis Tool *

FILENAME: KBSMA.OPS *
• * COORDINATOR: Capt Dave Fautheree, GCS-86M *

PROJECT: MS Thesis *
OPERATING SYSTEM: VAX/VMS 4.2 *
LANGUAGE: OPS-5 *
USE: RUN KBSMA *

CONTENTS: *
* Module *

* Variable *

* Cohesion-Answers *

'* Coupling::Data:1 *

;* Coupling::Data:2 *

* Coupling::Data:3 *

Coupling::Stamp:l *
* Coupling::Stamp:2 *
* Coupling::Stamp:3 *

SCoupling::Control:l

* Coupling::Control:2 *

Coupling::Control:3 *
"8 Coupling::Common:l *

* Coupling::Common:2 *

* Coupling::Common:3 *

* Cohesion::One-Function *

* Cohesion::Activities-Related *

Cohesion::Sequence-Important *
Cohesion::Same-Category*
Cohesion::Functional *
Cohesion::Sequential *

* Cohesion::Communcational *

Cohesion::Procedural *
Cohesion::Temporal *
Cohesion::Logical *

"* Cohesion::Coincidental *

FUNCTION: Define data structures and production rules *

for a Knowledge Based Software Module Analyzer, *
a Software Engineering tool for determining *

,';* module coupling and cohesion. *

D- 2

..

Source Code Listing - KBSMA

Define Module data structure

(literalize Module ; The following data items are defined from
; the AFIT/ENG Software Development Guidelines

module-name
project
module-number
description
; passed-variables

passed-variable-i
passed-variable-2
passed-variable-3

returns
; globals-used

global-used-i
global-used-2
global-used-3

; globals-changed
global-changed-i
global-changed-2
global-changed-3

files-read
files-written
calling-modules
modules-called
version
date
author
filename

coupling-type
cohesion-type
reccomendation)

* Define Variable data structure

(literalize Variable
variable-name
type ; SIMPLE or RECORD
control) , YES or NO - control variable from

another module

; Define Cohesion Answers data structure

D- 3

Source Code Listing - KBSMA

(literalize Cohesion-Answers
module-name
one-function ; YES or NO
activities-related ; DATA CONTROL or NEITHER
sequence-important ; YES or NO
same-category) ; YES or NO

Define KBSMA Startup for OPS5

(startup
(watch 0)
(disable halt)
(strategy lex)
(@ kbsma instances.dat)
(run))

D -4

-' " -'" """ " * ', ""i " """. -"" - * ' -* ," ""' "/ - ., ' ,-.'.* 'i,,' . .",'v ., .. ' .'-'...-44. -1,"

Source Code Listing - KBSMA

DATE: 5/24/85 *
VERSION: 1.0 *

NAME: PrintModule *
DESCRIPTION: Prints deduced results for each module *

ALGORITHM: *
* IF the module state is complete *

THEN print the module information *

o* *

AUTHOR: Capt Dave Fautheree *

(p Prir*Module
{(L,1,,iule ^module-name <nl>

^coupling-type <n2>
^cohesion-type <n3>
^reccomendation <n4>
-coupling-type <> nil
^cohesion-type <> nil) <module>}

(write (crlf)Module <nl> (crlf))
(write Coupling: <n2> (crlf))
(write Cohesion: <n3> (crlf))

* (write Reccomendation: <n4> (crlf) (crlf))
(remove <module>))

.,

J

D - 5

• .o . . . ° ,. °.-. , ° . . • ,-. - , . , -° . . .-- °"

Source Code Listing - KBSMA

d ;* LATE: 5/24/85 *
VERSION: 1.0 *

NAME: Coupling::Common *
;* DESCRIPTION: Production Rules for common coupling *

t*

ALGORITHM: *

IF the module uses a global and *
coupling has not been determined *

THEN set module coupling to common and *
give a reccomendation and *

* AUTHOR: Capt Dave Fautheree *

(p Coupling::Common:l
H(Module ^coupling-type nil

^global-used-i <globall>
^global-used-i <> nil) <module>}

(modify <module> -coupling-type Common
^reccomendation Ipass the required data iteml))

(p Coupling::Common:2
{(Module "coupling-type nil

"global-used-2 <global2>
.global-used-2 <> nil) <module>}

(modify <module> ^coupling-type Common
^reccomendation ipass the required data iteml))

(p Coupling::Common:3
{(Module ^coupling-type nil

^global-used-3 <qlobal3>
^global-used-3 <-, nil) <module>f

(modity <module> ^coupling-type Common
^reccomendation 1pass the required data iteml))

D 6

K - .. , " . - - ."- - - - . - . * . .-. *4. " . . *, , .. .*.*.- - • - . • . -

Source Code Listing - KBSMA

-' .

VERSION: 1.0 *

NAME: Coupling::Control *
DESCRIPTION: Production Rules for control coupling *

ALGORITHM: ,
IF a module has a parameter and *

coupling has not been determined *
AND the parameter is defined and *

it is a control variable *
THEN set module coupling to control and *

give a reccomendation

AUTHOR: Capt Dave Fautheree *

(p Coupling::Control:1
{(Module ^coupling-type nil

^passed-variable-l <param>
^passed-variable-i <> nil
^global-used-i nil
^global-used-2 nil
^global-used-3 nil) <module>}

(Variable ^variable-name <param>
^control Yes) <control>}

(modify <module> ^coupling-type Control
"reccomendation Inot use imported control informationi))

(p Coupling::Control:2
{(Module "coupling-type nil

^passed-variable-2 <param>
^passed-variable-2 <> nil
^global-used-i nil
^global-used-2 nil
"global-used-3 nil) <module>}

{(Variable ^variable-name <param>
^control Yes) <control>}

(modify <module> ^coupling-type Control
^reccomendation Inot use imported control informationl))

(p Coupling::Control:3
[(Module ^coupling-type nil

D- 7

Source Code Listing -KBSMA

"passed-variable-3 <param>
"passed-variable-3 <> nil
"global-used-i nil
"'global-used-2 nil
"global-used-3 nil) <module>l

M(ariable "variable-name <param>
"control Yes) <control>)

(modify <module> "coupling-type Control
"reccomendation Inot use imported control informationi))

D- 8

Source Code Listing - KBSMA

DATE: 5/24/85 *
VERSION: 1.0 *

NAME: Coupling::Stamp *
DESCRIPTION: Production Rule for determining stamp coupling *

• . *

ALGORITHM: *
IF a module has a parameter and *

coupling has not been determined *
AND the parameter is defined and *

its type is Record and *
it is not a control variable *

THEN set module coupling to stamp and *
; give a reccomendation *

AUTHOR: Capt Dave Fautheree *
I

(p Coupling::Stamp:l
{(Module ^coupling-type nil

^passed-variable-i <param>
^passed-variable-i <> nil
^global-used-I nil
"global-used-2 nil
"global-used-3 nil) <module>}

{(Variable ^variable-name <param>
^type Record
^control No) <record>}

(modify <module> "coupling-type Stamp
^reccomendation lonly pass in specific data itemsl))

(p Coupling::Stamp:2
{(Module ^coupling-type nil

^passed-variable-2 <param>
^passed-variable-2 <> nil
^global-used-i nil
^global-used-2 nil
"global-used-3 nil) <module>}

(Variable ^variable-name <param>
^type Record
^control No) <record>}

(modify <module> ^coupling-type Stamp
^reccomendation lonly pass in specific data itemsl))

D- 9

Source Code Listing - KBSMA
'S

'a"ip Coupling::Stamp:3
{(Module "coupling-type nil

^passed-variable-3 <param>
^passed-variable-3 <> nil
^global-used-i nil
^global-used-2 nil
^global-used-3 nil) <module>}

{(Variable -variable-name <param>
^type Record
'control No) <record>}

(modify <module> "coupling-type Stamp
^reccomendation lonly pass in specific data itemsl))

D 1

'Sn

V

5%

D. 5- - - -. I0

Source Code Listing - KBSMA

DATE: 5/24/85 *
VERSION: 1.0 *

o* *

NAME: Coupling::Data *
DESCRIPTION: Production Rule for determining data coupling *

ALGORITHM: *
• * IF a module has a parameter and *

coupling has not been determined *
AND the parameter is defined and *

its type is Simple and *
it is not a control variable *

THEN set module coupling to data and *
give a reccomendation *

o* *

AUTHOR: Capt Dave Fautheree *
* *

(p Coupling::Data:l
{(Module "coupling-type nil

"passed-variable-i <param>
^passed-variable-i <> nil
^global-used-i nil
^global-used-2 nil
^global-used-3 nil) <module>}

[(variable ^variable-name <param>
"type Simple
"control No) <data>)

(modify <module> "coupling-type Data
^reccomendation Ikeep up the good workl))

(p Coupling::Data:2
[(Module "coupling-type nil

^passed-variable-2 <param>
"passed-variable-2 <> nil
^global-used-i nil
^global-used-2 nil
^"global-used-3 nil) <module>}

[(Variable ^variable-name <param>
"type Simple
"control No) <data>}

(modify <module> "coupling-type Data
^reccomendation Ikeep up the good workl))

D -11

. °

..?. i< .i

I ____________________________LIN_

Source Code Listing -KBSMA

(p Coupling::Data:3
I [(Module "coupling-type nil

"passed-variable-3 <param>
"passed-variable-3 <> nil
"global-used-i nil

"global-used-2 nil

"global-used-3 nil) <module>}
M(ariable "variable-name <param>

',type Simple
*,control No) <data>}

(modify <module> "coupling-type Data
"reccomendation Ikeep up the good worki))

Ile

01,

elWD - 12

Source Code Listing - KBSMA

DATE: 5/24/85 *
VERSION: 1.0 *

o* *

NAME: Cohesion::Questions *
DESCRIPTION: Production Rules for asking Cohesion questions *

ALGORITHM: *
IF cohesion has not been determined *
AND there is insufficient data to deduce it *
THEN ask the appropriate question *

AUTHOR: Capt Dave Fautheree *

(p Cohesion::One-Function
[(Module ^cohesion-type nil

"module-name <name>) <module>}
--- >

(write (crlf)Is module <name> doing only one function? I(Yes or No))
(make Cohesion-Answers ^module-name <name>

^activities-related nil
"one-function (accept)))

(p Cohesion::Relate-Activities
{(Module ^cohesion-type nil

"module-name <name>) <module>l
[(Cohesion-Answers ^module-name <name>

^activities-related nil
"one-function No) <cohesion>}

(write (crlf)In module <name> what relates the activities?)
(write I(Data Control Neither)l)
(modify <cohesion> ^activities-related (accept)))

(p Cohesion::Sequence-Important
{(Module ^cohesion-type nil

"module-name <name>) <module>)
[(Cohesion-Answers "module-name <name>

^activities-related << Data Control >>) <cohesion>1

(write (crlf)In module <name> is the sequence important?)
(write I(Yes No)I
(modify <cohesion> ^sequence-important (accept)))

D -13

Source Code Listing -KBSMA

(pCohesion: :Same-Category
[(Module "cohesion-type nil

"'module-name <name>) <module>}
I (Cohesion-Answers "module-name <name>

"activities-related Neither) <cohesion>)

(write (crlf)In module <name> are the activities in the)
(write same general category?)
(write I(Yes No)I)
(modify <cohesion> "same-category (accept)))

D 14

Source Code Listing - KBSMA

• DATE: 5/24/85*

VERSION: 1.0 *
o* *

NAME: Cohesion::XXXXXXXXX *

DESCRIPTION: Production Rules for determining Cohesion *
°* *

ALGORITHM: *

IF cohesion has not been determined *
AND there is sufficient data to deduce it *
THEN deduce it and remove Answer structure *

o* *

AUTHOR: Capt Dave Fautheree *
#*

o* *

(p Cohesion::Functional
(Module ^cohesion-type nil

^module-name <name>) <module>}
H(Cohesion-Answers "module-name <name>

"one-function Yes) <cohesion>}

(modify <module> ^cohesion-type Functional)
(remove <cohesion>))

(p Cohesion::Sequential
{(Module ^cohesion-type nil

^module-name <name>) <module>}
{(Cohesion-Answers "module-name <name>

"one-function No
^activities-related Data
^sequence-important Yes) <cohesion>}

(modify <module> ^cohesion-type Sequential)
(remove <cohesion>))

(p Cohesion::Communicational
{(Module "cohesion-type nil

"module-name <name>) <module>}
{(Cohesion-Answers "module-name <name>

^one-function No
^activities-related Data
^sequence-important No) <cohesion>]

(modify <module> ^cohesion-type Communicational)
(remove <cohesion>))

D - 15

* * - . . * - . . - *

Source Code Listing - KBSMA

'p Cohesion::Procedural{(Module ^cohesion-type nil

"module-name <name>) <module>}
((Cohesion-Answers ^module-name <name>

"one-function No
^activities-related Control
^sequence-important Yes) <cohesion>}

(modify <module> ^cohesion-type Procedural)
(remove <cohesion>))

(p Cohesion::Temporal
((Module ^cohesion-type nil

"module-name <name>) <module>}
((Cohesion-Answers ^module-name <name>

^"one-function No
^activities-related Control
"sequence-important No) <cohesion>}

(modify <module> "cohesion-type Temporal)
(remove <cohesion>))

1P Cohesion::Logical
(Module ^cohesion-type nil

"module-name <name>) <module>}
((Cohesion-Answers "module-name <name>

"one-function No
^activities-related Neither
"same-category Yes) <cohesion>}

(modify <module> "cohesion-type Logical)
(remove <cohesion>))

(p Cohesion::Coincidental
((Module "cohesion-type nil

"module-name <name>) <module>}
[(Cohesion-Answers "module-name <name>

"one-function No
^activities-related Neither
"same-category No) <cohesion>}

(modify <module> "cohesion-type Coincidental)
(remove <cohesion>))

D -16

"4

Appendix E

User's Manual

for the

Knowledge Based

Software Engineering Environment

(KBSEE)

.E -
.4. o - - . - o . , o . .- . °, ., * . * ° o J , ° - .. o. . . ° . • °

o
. .

User's Manual - KBSEE

Description |

The Knowledge Based Software Engineering Environment,

KBSEE, is an executive system encompassing a variety of

software development tools. It consists of four major

subsystems: the command interpreter, the display manager,

the project manager, and the tool set. The command

interpreter reads user keyboard commands and executes user

menu selections. The display manager maintains the multiple

window display. The project manager maintains a data base

of the user's projects, files, and locations. It also

stores the user's prefered edit, compile, and link commands.

The tool set consists of a variety of software tools for

developing, documenting, and maintaining software systems.

System Requirements

Operating System - VAX/VMS version 4.2 or later.

Compiler - VAX C version 2.0 or later (required only for

maintenance and addition of future enhancements).

Terminal - VT 100 series, VT 200 series, or compatable.

System Operation

Logical Name Definition

Each KBSEE must have the logical name KBSEE$SYSTEM

defined as the location of the KBSEE executable program and

E 2
-a

User's Manual - KBSEE

.COM tool execution files. For example, if the KBSEE is

located in DUA1:[KBSEE], then the logical name would be

defined by the DCL command:

DEFINE KBSEE$SYSTEM DUAI:[KBSEE]

in the user's LOGIN.COM file or by the DCL command:

DEFINE/SYSTEM KBSEE$SYSTEM DUAI:[KBSEE]

in the system wide startup file SYS$MANAGER:SYSTARTUP.COM.

System Execution

Once the logicl name KBSEE$SYSTEM has been defined, the

KBSEE can be activated in several ways, depending upon the

user and the system manager. Unless one of the steps

described below is accomplished, the user must enter the DCL

command:

RUN KBSEE$SYSTEM:KBSEE

to activate the environment. The preferred method is to

have the system manager place the DCL command:

$KBSEE == "RUN KBSEE$SYSTEM:KBSEE"

in the system wide login file defined by the system logical

name SYS$SYLOGIN. If this cannot be done, then the command

should be placed in the user's LOGIN.COM file.

Once the symbol KBSEE has been defined in either the

system wide login file or the user's login file, the

environment can be executed by ei tering the command:

KBSEE

E -3

:I-

User's Manual - KBSEE

at the VMS DCL $ prompt.

Once the environment has been activated, the copyright

notice appears for approximately 3 seconds, followed by the

main menu. The system tries to load the last project

selected by the user. If the file KBSEE.SAVE does not

exist, then the user must start or select a new project and

user profile as soon as possible. This is accomplished by

selecting the START PROJECT or SELECT PROJECT menu items and

the USER PROFILE menu item. The environment will interact

with the user in the messages window for the necessary

information.

Keyboard Commands

The current menu selection is always highlighted.

Pressing the select key on the VT200 editing keypad or 7 on

the VT100 numeric keypad causes the current selection to be

executed. The current selection is changed by pressing the

arrow keys or numeric keypad keys 1, 2, 3, and 5, which

simulate the left arrow, down arrow, right arrow, and up

arrow keys, respectively (see attached figure). The remove

key on the VT200 editing keypad or the PF3 key on the VT100

numeric keypad removes the current menu. If the current

menu is the main menu, then the system exits immediately.

The menus have a wrap around capability; i.e., if the user

is at the bottom of a menu and presses the down arrow, the

E- 4

User's Manual - KBSEE

current menu item becomes the top item on the menu. The

same is true for changing the menu column of the main menu.

Pressing the right arrow when the current item is in the

rightmost menu column causes the topmost menu item in the

leftmost column to become current.

Menu Selections

Build Program - edits, compiles, and links the current

work file.

Edit - edits the current work file.

Compile - compiles the current work file.

Link - links the object code produced by compiling

current work file.

6 Run - runs the executable image produced by the link

command.

Display Errors - displays the error messages returned by

any of the previous selections.

Start Project - starts a new project and makes it

current.

Select Project - makes a different project in the

project database current.

List Projects - lists all projects in the user's project

database.

Display Project - displays all work files and locations

associated with the current project.

E -5

."

User's Manual - KBSEE

Work File - creates a new work file or selects an

existing one from the project database and makes it current.

User Profile - creates a profile of the edit, compile,

and link commands for the current work file.

°, Introduction - displays useful information about the

KBSEE.

Debugger - executes the VAX/VMS symbolic debugger.

Analyzer - analyzes the modules using the KBSMA.

Librarian - executes the VAX/VMS librarian utility.

Printer - prints a file on one of the system printers.

Text Formatter - executes a text formatting utility,

MASS11 or Runoff.

(0 Spawn to CLI - temporarily exits the KBSEE and invokes a

* subprocess at the Command Language Interpreter level.

Entering the DCL command LOGOUT returns the user back to the

KBSEE.

Exit - exits the system.

Maintenance

Building the System

The source code for the KBSEE is contained in three

files. The master file is named KBSEE.C, which calls the

other two files through C preprocessor commands:

#include kbseeproj

• E- 6

.4

" .-"- .---". " " .'.' ' -.- . * - * .4" * 4 '-" ,'- '-< - .*.*. " -4"<"4 -F "F I " l ,- .i[-

•- -. . j , . , ... W g i,-J . - . w .vr - -rJ.~~-- v---- .-. vrr-u-,r--uc.--
I

,w-- - o.-r- - '-,t .r .r .

User's Manual - KBSEE

#include kbsee exec

The file kbsee_proj.c contains the code for the project

manager. The file kbsee exec contains the code for the

command interpreter and display management functions.

To modify the system, edit the appropriate source file.

Then, compile the modified system by entering the following

DCL command:

CC KBSEE

Ignore the warning about the conflicting definition of

LIB$SPAWN.

Prior to the link command, check to ensure that the two

logical names LNK$LIBRARY and LNK$LIBRARY 1 are defined as

shown below:

define/nolog lnk$library sys$library:vaxcrtl

define/nolog lnk$library_l sys$library:vaxccurses

These logical names are essential for the proper operation

of the link command when linking KBSEE. It defines the

location of all external Run Time Library functions called

by KBSEE. Since almost all routines used by the KBSEE

modules are in one of these Run Time Libraries, failure to

specify these logical names will cause severe errors in the

link process.

Once the modified system compiles without fatal errors

and the two lnk$ logicals are defined, link the KBSEE with I

the following command:

E- 7

-N -N A

User's Manual - KBSEE

LINK KBSEE, OPTIONSFILE/OPT

where options file is a file named optionsfile.opt with the

following line:

sys$share:vaxcrtl.exe/share

This options file speeds the link time and execution time by

making all the references to the VAX C Run Time Library

shareable.

For further information about compiling and linking, see

the Programming in VAX C and the VAX/VMS Linker Reference

Manual.

The file generated by the link command is the executable

image for the KBSEE, KBSEE.EXE. This is the file used by

the DCL RUN command when the user enters KBSEE or RUN

KBSEE$SYSTEM:KBSEE into the DCL CLI.

Adding a New Tool

To add a new tool to the KBSEE, edit the file

KBSEE EXEC.C and add an item to one of the menus

(mainmenu_1, main menu_2, main menu_3, main menu_4). Then

edit KBSEE.C and modify the main-data structure

initialization for the appropriate menu by adding 1 to the

max y value. Add an appropriate string comparison to the

chk main_1, 2, 3 or 4, routines (depending on which menu the

new item is in) and add a function call to a new exec

routine that actually calls a subprocess command file and

E 8

...- .° a

User's Manual - KBSEE

executes the tool. If the tool writes to the screen, then

the command file must contain a clear screen command before

and after the tool is actually invoked. See the

execanalyzer.com and execedit.com for examples of how to

accomplish this. If the tool does not write to the screen,

then use the exec compile.com as an example.

E- 9

~N ~ v ~k -YW~YWVW
5

V'Y~. 'i.v~' -W 7'1. V'y V~- y ~ ~ T

Appendix F

User's Guide

for the

Knowledge Based

Software Module Analyzer

(KBSMA)

F-1

Zt <

User's Guide - KBSMA

Description

The Knowledge Based Software Module Analyzer, KBSMA, is

a knowledge based system which analyzes software modules

using the software engineering principles of coupling and

cohesion.

System Requirements

Operating System - VAX/VMS version 4.2 or later.

Compiler - VAX OPS-5 version 1.0 or later (required only

for maintenance and addition of future enhancements).

Terminal - VT 100 series, VT 200 series, or compatable.

System Operation

Knowledge Base

The KBSMA consists of two files, the knowledge base,

which contains the rules and the data structure definitions,

and the instances, containing data about the modules to be

analyzed. The rules are written in OPS-5 productions. The

data structures are defined by OPS-5 LITERALIZE statements.

For details on the syntax of OPS-5 productions and

literalizations, see the OPS-5 User's Manual.

The knowledge base for the KBSMA is contained in the

file KBMSA.OPS. This file does not have to be recompiled

unless more productions or data structures definitions are

added.

F- 2

User's Guide - KBSMA

The instances are contained in the file

KBSMAINSTANCES.DAT, which contains all the data about the

specific modules to be analyzed. This file must be edited

manually to add the necessary information. The current

version of the file is an excellent example of the required

syntax and data items. This file is loaded into working

memory whenever the KBSMA is activated. This separation of

the knowledge base and instances provides a great deal of

flexibility and ease of use, since the knowledge base does

not change for each module, only the instances.

System Execution

The KBSMA can be activated in two different ways,

to manually and by selection of the Analyze option in the

KBSEE. To activate the system manually, enter

RUN KBSEE$SYSTEM:KBSMA

The KBSMA contains startup information which loads the

instances into working memory automatically. The STARTUP

function is located in the file KBSMA.OPS. The KBSMA

prompts the user for cohesion information, but automatically

deduces the coupling type from the instances.

Maintenance

Building the System

The source code for the KBSMA is contained in the file

F-3

l in i Dill il Hi...i.in....

User's Guide - KBSMA

KBSMA.OPS. To build a new executable image, enter the

following command:

OPS KBSMA

The OPS-5 compiler produces an executable image file

directly, so no link operation is necessary.

Adding a New Rule

To add a new rule, design the rule in an Engish like

manner, then translate it into the OPS-5 language. For

details on the OPS-5 syntax, see the OPS-5 User's Manual.

The new rule needs to be added to the source file KBSMA.OPS.

If the new rule uses a data structure that has not yet been

defined, then add another LITERALIZE to the source file

which defines the new structure.

Edit the instances file KBSMAINSTANCES.DAT and add new

instances using the newly defined and currently existing

data structures. Then, recompile the knowledge base with

the new rules and data structure definitions as described

above. Test the new rule by executing the newly build

executable image, KBSMA.EXE.

F 4F

*5

W_
%*

Bibliography

AFIT/ENG. AFIT/ENG Development Documentation Guidelines and
Standards, Draft #2. Department of Electrical and
Computer Engineering, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson Air Force
Base, Ohio, 1984.

Aho, Alfred V. et al. The Design and Analysis of Computer
Algorithms. Reading MA: Addison-Wesley Publishing
Company, 1974.

AJPO, Ada Joint Program Office. Requirements for a
Programming Environment for the Common High Order
Language, preliminary Stoneman, Department of Defense,

Washington, DC, 1980.

AJPO, Ada Joing Program Office. Ada Programming Language
Reference Manual, ANSI/MIL-STD 1850A-1983, Department of
Defense, Washington, DC, 1983.

Babb, Robert G. II et al. "Workshop on Models and languages
for Software Specification and Design," Computer, 18:
103-108 (March 1985).

Barstow, David R. and Howard E. Shrobe. "From Interactive
to Intelligent Programming Environments", Interactive
Programming Environments, McGraw-Hill Book Company, New
York, New York, 1984.

Boehm, B. W. "Software Engineering", IEEE Transactions on
Computers, Vol C-25, 12:1226-1241 (December, 1976).

Chandrasekaran, B. "Generic Tasks in Expert System Design
and Their Role in Explanation of Problem Solving,"
Proceedings of the NAS/ONR Workshop on AI and
Distributed Problem Solving, May 1985.

S------ "Towards a Taxonomy of Problem Solving Types," The
AI Magazine: 9-17 (Winter/Spring 1983).

Charniak, Eugene et al. Artificial Intelligence Programming.
Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers,
1980.

Cohen, Paul R. and Edward A. Feigenbaum. The Handbook of
Artificial Intelligence. Los Altos, California: William
Kaufmann, 1982.

BIB-l..
. 2'

.=

.F ", , ' -, ."- ."- ." -'- ."-. ".,'."- -."-.".."-'-/ ": -..- -< -- -.-.-.- ''

It

DEC. OPS5 User's Manual, AA-BHOOA-TE, Digital Equipment
Corporation, Maynard, Massachusetts, 1984.

------. Programming in VAX C, AA-L270B-TE, Digital Equipment
Corporation, Maynard, Massachusetts, 1985.

DeMarco, Tom. Structured Analysis and System Specification.
New York: Yourdon Press, 1979.

Deutsch, Michael S. "Validating Functional Requirements
using a Human Knowledge Base," Draft for Submission to
IEEE Transactions on Software Engineering: August 1985.

Forgy, Charles, et al. "Initial Assessment of Architectures
for Production Systems," Department of Computer
Science, Carnegie Mellon University, DAPRA Order No
3597: 116-120 (1984).

Freeman, P. Tutorial on Software Design Techniques, IEEE
Computer Society, (1976).

Gould, John and Clayton Lewis. "Designing for Usability: Key
Principles and What Designers Think," Communications of
the ACM, 28 (3): 300-311 (March 1985).

Hadfield, 2Lt Steven M. and Gary B. Lamont. "The Software

Development Workbench: An Integrated Software
Development Environment," Proceedings of the Digital
Equipment Computer Users Society: 171-177 (1983).

Hadfield, 2Lt Steven M. An Interactive and Automated
Software Development Environment. MS Thesis
AFIT/GCS/EE/82D-17. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982.

Hansen, Wilfred J. "User Engineering Principles for
Interactive System", Fall Joint Computer Conference

." Proceedings, (39): 523-532 (1971).

Harmon, Paul and David King. Expert Systems: Artificial
Intelligence in Business, John Wiley and Sons, New York,
1985.

Hayes-Roth, Frederick et al. Building Expert Systems.
Reading, Mass: Addison-Wesley Publishing Co, 1983.

Helms, Harry L. Computer Language Reference Guide, Second
Edition, Howard W Sams and Co, Indianapolis, Indiana,
1984.
*-..d BIB-2

_2%

Horowitz, Ellis and Sartaj Sahni. Fundamentals of Data
Structures in Pascal. Rockville MD: Computer Science
Press, 1984.

Houghton, Raymond C., Jr. "Software Development Tools: A
Profile," Computer, 16 (5): 63-70 (May 1983).

IEEE. "IEEE Standard Glossary of Software Engineering
Terminology," IEEE Std 728-1983.

Kernighan, Brian W. and Dennis M. Ritchie. The C
Programming Language, Prentice-Hall, Englewood Cliffs,
New Jersey, 1978.

Kinnucan, Paul. "Software Tools Speed Expert System
Development," High Technology, 5 (3): 16-21 (March
1985).

Kowalsky, Robert. "AI and Software Engineering," Datamation:
92-102 (November 1, 1984).

Linden, Eugene. "IntelliCorp: The Selling of Artificial
Intelligence," High Technology, 5 (3): 22-25 (March
1985).

MacLennan, Bruce. Principles of Programming Languages,
Holt, Reinhart, and Winston, New York, 1983.

Manuel, Tom. "Cautiously Optimistic Tome Set for 5th
Generation," Electronics Week, 57 (34): 57-63 (December
3, 1984).

Manuel, Tom and Michael Rand. "Has AI's Time Come At
Last?", Electronics Week, 58 (5): 51-62 (February 4,
1985).

Martin, James. System Design from Provably Correct
Constructs. Englewood Cliffs, New Jersey:
Prentice-Hall, 1985.

Mihaloew, Reed A. SYSFL, A Systems Flowcharting Routine
Using Interactive Graphics. Aeronautical Systems
Division Computer Center, Air Force Systems Command,
Wright-Patterson AFB OH, undated.

Myers, Glenford J. Reliable Software Through Composite
Design. New York: Von Nostrand Reinhold Company, 1975.

BIB-3

N•

Myers, Ware. "The Need for Software Engineering," Computer,11 (2): 12-25 (February 1978).

Nilsson, Nils J. Principles of Artificial Intelligence.
Palo Alto, California: Tioga Publishing Co, 1980.

Partach, H. and R. Steinbruggen. "Program Transformation
Systems," Computing Surveys, 15 (3): 199-236, 1983.

Peters, Lawrence J. Software Design: Methods and
Techniques. New York: Yourdon Press, 1981.

Ramanathan, Jayashree. "Softer Ware," News in Engineering,
Ohio State University 56 (2): 15 (March 1984).

Rich, Elaine. Artificial Intelligence. New York:
McGraw-Hill Book Company, 1983.

Rychener, M. D. "Expert Systems for Engineering Design:
Problems, Components, Techniques, and Prototypes,"
Carnegie-Mellon University, Report DRC-05-02-83 (26
March 1984).

Sheil, B. A. "Power Tools for Programmers," Datamation,
Technical Publishing Co, 1983.

Swartout, William R. "XPLAIN: A System for Creating and
Explaining Expert Consulting Programs," Artificial
Intelligence Journal, 21 (3): 285-325 (September 1983).

Teitelbaum, Tim and Thomas Reps. "The Cornell Program
Synthesizer: A Syntax-Directed Programming Environment,"
Communications of the ACM, 24 (9): 563-573 (September
1981).

Teitelman, Warren. "A Display Oriented Programmer's
Assistant", CSL 77-3, XEROX PARC, Palo Alto, California,
1977.

UM 170133010. cerim AUTOIDEF System User's Reference
Manual. Materials Laboratory, Air Force Wright
Aeronautical Laboratories, Air Force Systems Command,
Wright-Patterson AFB OH, 1982.

Waters, Richard C. "The Programmer's Apprentice: Knowledge
Based Program Editing," IEEE Transactions on Software
Engineering, SE-8 (1): (January 1982).

BIB-4

*A'A2 A -7 . As~,.A

Wess, Bernard P., Jr. "Artificial Intelligence Techniques
Speed Software Development," Mini-Micro Systems: 127-136
(September 1984).

Wirth, Niklaus. Algorithms + Data Structures = Programs.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1976.

Woffinden, D.S., Instructor of Electrical and Computer
Engineering. Lecture materials in EENG 793, Advanced
Software Engineering. School of Engineering, Air Force
Institute of Technology, Wright-Patterson AFB, OH, 1985.

4-

II

-p

-.. .. BIB-5

d ° . . ° - - ° . . ° ° ° ; . [°° ° J . . . ; J . ° - - .. . - "

V7V

Vita

VITA-

- o

VITA-I

. W.*.

-' VITA

Captain David W. Fautheree was born on 8 July 1958 in

Stuttgart, West Germany. He graduated from a U.S.

Department of Defense Overseas Dependants high school in

Naples, Italy in June 1976. He then attended Lousiana Tech

University from which he received the degree of Bachelor of

Science in Mathematics in May 1980. Upon graduation, he

received a commission in the United States Air Force through

the Air Force Reserve Officer Training Corps as a

Distinguished Military Graduate. After completing the

Computer Systems Development Officer course at Keesler AFB,

Mississippi, his first assignment was to the Air Force

Contract Management Division, Kirtland AFB, New Mexico,

where he was the Chief, Computer Systems Planning Branch in

the Computer Resources Management and Communications Office.

During this time, Capt Fautheree designed, implemented, and

managed a nationwide computer network. He entered the

School of Engineering, Air Force Institute of Technology, in

May 1984.

Permanent address: 14103 Oakstead

San Antonio, TX 78231

VITA-2

'U
,

sEComiTw CLASSUIIICAkTiON OF TIS PAGE

LLR E U 1 LASSIFICAI ION 1lb. ItE ST H. k- I- .

2.. SE C L ITY CL ASSI I CATION AUTHORIl 'Y 3. LJISTRIE3OTI()/V"i., ,l (,I- FLP(* H1

~2b. DECLASSIFICATION/OO INOISRADING SCHE DULE A p rr ov d r c 0 o.(",

4. PERFOFAMNING ORGANIZAT ION REF'OR1 NUMBf- FtSI 5. MONITORING Ot- ;0r. , FO .fC~j(iT 'JUOC R(l,i

AFIT/GCS /ENC/S6m-2

6a NM RO PEiOFMING ORGANIZATION 3b. OFF ICE SYMBOL 7a. NAME OF: MOIITOP~ir.O ORGANIZATION

Schiool of Engineering AFIT/ENG _____

6c DDRESS (Cty. State oi 71'Coc b. ADDRESS (C ity . Slate aicd Z11P Code)

A i r Force Institute of Techinology

8&. NAME OF FUNDING/SPOrNSORING 8b. OFFICE LYMSOL 9, PROCORLMENT INSTRUMENT IDENTIFICATION NUMUE
ORGANIZATION (it applicable)

AIT ________J ENG ____________

Sc. ADDRESS (City. State aid 711P Code) 10 SDURCE OF FUN~DING ~ _______

Air Force Ins titute of Technology PROGRAM PROjE CT TASK WORK UNIT

Wright-Patterson AFB Oil 45433 EIMETO C O O

111. T T LE (Ineltide Secsrily Cla,,,ficatsw, .n-

I' PLEFSONAL AUTHcOrl (S) .
FauhereDavid W. , B. S. , Captain, USAF

13.t TYPE OF REPORT 13t,. Ti.ME COVERED 14. DATE Of R~ro;IT sir, Mo. Day) 15. Pi,GE CUd cI

MS Thesi s IF ROm TO ____ 1986 MIarch 21
= 76 SOP) L 7NTARY NOT ATI oN4

17. C SAT CO E 12. SUBJECT TERMS (Cont~iue r rev,-oc if rCecssary anid identify by Woch nrisrlber)

___Artif icial Intelligence Software Life Cyc 1.e

TILE An An ,s Tolina3nolegeBae Software EngineeringtaeDsg

TITE: AnAnay~ i Tol nDarnwlig Base Rofeaea ann oerIg OV1911

Air Force Institute of Techmology 4T
Wrighti.attezaom AFB 01 45433

UJCLAFIFIFD/NLH'I Fr, ~SeriFA[RPT. .- DU T 'Fn II Coc I 1

22a. NAMI. OF F (tSPO jLiL ItsDIVlIJAt ' I I)' P1.2 .I

.1 r y

SECUIMIY CLASS'1 O;T F Tt'IS PAGL

ABSTRACT; This thesis investigationi prescntz the concept ua] l evel.
deVeiOpljnt Oif a KIJ0WjC-dFe Pa2Softwar eni(
environmient. A va re, vy o f Ox ti j a tools z.re in tc p1 atcd
into the environment as well as newly developed
knovwledge based tc*;,ol., ,Stich Zas the sof tware medule 1nillys! s
tool designed and impleiiented for this Project,

Sys tenj develop ient f ollu'as the so f tare en-gi)to eerin~
lif ccycle of ro (Iui'cncnts an aly sis , des!ign . implementa tion,
and operation as well as cxploratory prvgra~ming/rapid
pro totyping techniques,

CIO'

F"K..7Tv I' K l-

11%

r/p

..

